Выбрать главу

StringWriter

LineNumberInputStream

LineNumberReader

PushBackInputStream

PushBackReader

SequenceInputStream

Нет аналога

Как видно из таблицы, различия крайне незначительны и предсказуемы.

Например, конечно же, отсутствует преобразование в символьное представление примитивных типов Java и объектов ( DataInput/Output, ObjectInput/Output ). Добавлены классы-мосты, преобразующие символьные потоки в байтовые: InputStreamReader и OutputStreamWriter. Именно на их основе реализованы FileReader и FileWriter. Метод available() класса InputStream в классе Reader отсутствует, он заменен методом ready(), возвращающим булевое значение, – готов ли поток к считыванию (то есть будет ли считывание произведено без блокирования).

В остальном же использование символьных потоков идентично работе с байтовыми потоками. Так, программный код для записи символьных данных в файл будет выглядеть примерно следующим образом:

String fileName = "d:\\file.txt";

//Строка, которая будет записана в файл

String data = "Some data to be written and read.\n";

try {

FileWriter fw = new FileWriter(fileName);

BufferedWriter bw = new BufferedWriter(fw);

System.out.println("Write some data to file: " + fileName);

// Несколько раз записать строку

for(int i=(int)(Math.random()*10);--i>=0;)

bw.write(data);

bw.close();

// Считываем результат

FileReader fr = new FileReader(fileName);

BufferedReader br = new BufferedReader(fr);

String s = null;

int count = 0;

System.out.println("Read data from file: " + fileName);

// Считывать данные, отображая на экран

while((s=br.readLine())!=null)

System.out.println("row " + ++count + " read:" + s);

br.close();

}

catch(Exception e) {

e.printStackTrace();

}

Пример 15.15.

Классы-мосты InputStreamReader и OutputStreamWriter при преобразовании символов также используют некоторую кодировку. Ее можно задать, передав в конструктор в качестве аргумента ее название. Если оно не будет соответствовать никакой из известных кодировок, будет брошено исключение UnsupportedEncodingException. Вот некоторые из корректных значений этого аргумента (чувствительного к регистру!) для распространенных кодировок: "Cp1251", "UTF-8", "8859_1" и т.д.

Класс StreamTokenizer

Экземпляр StreamTokenizer создается поверх существующего объекта, либо InputStream, либо Reader. Как и java.util.StringTokenizer, этот класс позволяет разбивать данные на лексемы (token), выделяемые из потока по определенным свойствам. Поскольку работа ведется со словами, конструктор, принимающий InputStream, объявлен как deprecated (предлагается оборачивать байтовый поток классом InputStreamReader и вызывать второй конструктор). Общий принцип работы такой же, как и у StringTokenizer, – задаются параметры разбиения, после чего вызывается метод nextToken(), пока не будет достигнут конец потока. Способы задания разбиения у StreamTokenizer довольно разнообразны, но просты, и поэтому здесь не рассматриваются.

Работа с файловой системой

Класс File

Если классы потоков осуществляют реальную запись и чтение данных, то класс File – это вспомогательный инструмент, призванный обеспечить работу с файлами и каталогами.

Объект класса File является абстрактным представлением файла и пути к нему. Он устанавливает только соответствие с ним, при этом для создания объекта неважно, существует ли такой файл на диске. После создания можно выполнить проверку, вызвав метод exists, который возвращает значение true, если файл существует. Создание или удаление объекта класса File никоим образом не отображается на реальных файлах. Для работы с содержимым файла можно получить экземпляры FileI/OStream.

Объект File может указывать на каталог (узнать это можно путем вызова метода isDirectory ). Метод list возвращает список имен (массив String ) содержащихся в нем файлов (если объект File не указывает на каталог – будет возвращен null ).

Следующий пример демонстрирует использование объектов класса File:

import java.io.*;

public class FileDemo {

public static void findFiles(File file, FileFilter filter,

PrintStream output) throws IOException {

if (file.isDirectory()) {

File[] list = file.listFiles();

for (int i=list.length; --i>=0;) {

findFiles(list[i], filter, output);

}

} else {

if (filter.accept(file))

output.println("\t" + file.getCanonicalPath());

}

}

public static void main(String[] args) {

class NameFilter implements FileFilter {

private String mask; NameFilter(String mask) {

this.mask = mask;

}

public boolean accept(File file) {

return (file.getName().indexOf(mask)!=-1)?true:false;

}

}

File pathFile = new File(".");

String filterString = ".java"; try {

FileFilter filter = new NameFilter(filterString);

findFiles(pathFile, filter, System.out);

}

catch(Exception e) {

e.printStackTrace();

}

System.out.println("work finished");

}

}

Пример 15.16.

При выполнении этой программы на экран будут выведены названия (в каноническом виде) всех файлов, с расширением .java, содержащихся в текущем каталоге и всех его подкаталогах.

Для определения того, что файл имеет расширение .java, использовался интерфейс FileFilter с реализацией в виде внутреннего класса NameFilter. Интерфейс FileFilter определяет только один метод accept, возвращающий значение, определяющее, попадает ли переданный файл в условия фильтрации. Помимо этого интерфейса, существует еще одна разновидность интерфейса фильтра – FilenameFilter, где метод accept определен несколько иначе: он принимает не объект файла к проверке, а объект File, указывающий на каталог, где находится файл для проверки, и строку его названия. Для проверки совпадения, с учетом регулярных выражений, нужно соответствующим образом реализовать метод accept. В конкретном приведенном примере можно было обойтись и без использования интерфейсов FileFilter или FilenameFilter. На практике их можно использовать для вызова методов list объектов File – в этих случаях будут возвращены файлы с учетом фильтра.