Другими словами, применение модуля pickle позволит нам сохранять и извлекать объекты Python за один шаг, благодаря чему мы сможем обрабатывать записи, используя привычный синтаксис языка Python. Невзирая на сложность реализации, модуль pickle удивительно прост в использовании. В примере 1.5 демонстрируется, как с помощью этого модуля можно сохранять записи в файле.
Пример 1.5. PP4E\Preview\make_db_pickle.py
from initdata import db import pickle
dbfile = open(‘people-pickle’, ‘wb’) # в версии 3.X следует использовать pickle.dump(db, dbfile) # двоичный режим работы с файлами, так как
dbfile.close() # данные имеют тип bytes, а не str
Если запустить этот сценарий, он сохранит всю базу данных (словарь словарей, который создается сценарием из примера 1.1) в файл с именем people-pickle в текущем рабочем каталоге. В процессе работы модуль pickle преобразовывает объект в строку. В примере 1.6 демонстрируется, как можно реализовать доступ к сохраненной базе данных после ее создания, - достаточно просто открыть файл и передать его модулю pickle, который восстановит объект из последовательного представления.
Пример 1.6. PP4E\Preview\dump_db_pickle.py
import pickle
dbfile = open(‘people-pickle’, ‘rb’) # в версии 3.X следует использовать db = pickle.load(dbfile) # двоичный режим работы с файлами
for key in db:
print(key, ‘=>\n ‘, db[key]) print(db[‘sue’][‘name’])
Ниже приводится пример запуска этих двух сценариев из командной строки. Естественно, эти сценарии можно запустить и в среде IDLE, чтобы в интерактивном сеансе открыть и исследовать файл, созданный модулем pickle:
...\PP4E\Preview> python make_db_pickle.py ...\PP4E\Preview> python dump_db_pickle.py
bob =>
{‘pay’: 30000, ‘job’: ‘dev’, ‘age’: 42, ‘name’: ‘Bob Smith’}
sue =>
{‘pay’: 40000, ‘job’: ‘hdw’, ‘age’: 45, ‘name’: ‘Sue Jones’} tom =>
{‘pay’: 0, ‘job’: None, ‘age’: 50, ‘name’: ‘Tom’}
Sue Jones
Внесение изменений в базу данных, сохраненную с помощью модуля pickle, выполняется точно так же, как и при использовании текстового файла, созданного вручную, за исключением того, что все необходимые преобразования выполняются стандартным модулем. Как это делается, демонстрирует пример 1.7.
Пример 1.7. PP4E\Preview\update-db-pickle.py
import pickle
dbfile = open(‘people-pickle’, ‘rb’) db = pickle.load(dbfile) dbfile.close()
db[‘sue’][‘pay’] *= 1.10 db[‘tom’][‘name’] = ‘Tom Tom’
dbfile = open(‘people-pickle’, ‘wb’) pickle.dump(db, dbfile) dbfile.close()
Обратите внимание, что после изменения записи в файл сохраняется вся база данных целиком, как и при использовании простого текстового файла; это может занимать продолжительное время, если база данных имеет значительный объем, но мы пока не будем беспокоиться об этом. Ниже приводится пример запуска сценариев dump_db_pickle.py и update_db_pickle.py - как и в предыдущем разделе, измененный оклад Сью и имя Тома сохраняются между вызовами сценариев, потому что записываются обратно в файл (но на этот раз с помощью модуля pickle):
...\PP4E\Preview> python update_db_pickle.py ...\PP4E\Preview> python dump_db_pickle.py
bob =>
{‘pay’: 30000, ‘job’: ‘dev’, ‘age’: 42, ‘name’: ‘Bob Smith’}
sue =>
{‘pay’: 44000.0, ‘job’: ‘hdw’, ‘age’: 45, ‘name’: ‘Sue Jones’} tom =>
{‘pay’: 0, ‘job’: None, ‘age’: 50, ‘name’: ‘Tom Tom'}
Sue Jones
Как мы узнаем в главе 17, модуль pickle поддерживает объекты практически любых типов - списки, словари, экземпляры классов, вложенные структуры и многие другие. Там же мы узнаем о текстовых и двоичных протоколах преобразования сохраняемых данных. В Python 3 для представления сохраненных данных все протоколы используют объекты типа bytes, чем обусловлена необходимость открывать файлы pickle в двоичном режиме, независимо от используемого протокола. Кроме того, как будет показано далее в этой главе, модуль pickle и его формат представления данных используется модулем shelve и базами данных ZODB, а в случае экземпляров классов сохраняются не только данные в объектах, но и их поведение.
Модуль pickle фактически является гораздо более универсальным, чем можно было бы заключить из представленных примеров. Поскольку сериализованные данные принимаются любыми объектами, поддерживающими интерфейс, совместимый с файлами, методы dump и load модуля pickle могут использоваться для передачи объектов Python через различные среды распространения информации. С помощью сетевых сокетов, например, можно организовать передачу сериализованных объектов Python по сети и тем самым обеспечить альтернативу более тяжелым протоколам, таким как SOAP и XML-RPC.