Выбрать главу

пред2( X, Z) :-

 родитель( X, Y),

 пред2( Y, Z).

пред2( X, Z) :-

 родитель( X, Z).

% Вариант  b:  изменение порядка целей во втором предложении

% исходной версии

пред3( X, Z) :-

 родитель( X, Z).

пред3( X, Z) :-

 пред3( X, Y),

 родитель( Y, Z).

% Вариант  с:  изменение порядка предложений и целей в исходной

% версии

пред4( X, Z) :-

 пред4( X, Y),

 родитель( Y, Z).

пред4( X, Z):-

 родитель( X, Z).

Рис. 2.16.  Четыре версии программы предок.

В последнем случае пролог-система не сможет найти ответа. И выведет на терминал сообщение: "Не хватает памяти".

На рис. 1.11 гл. 1 были показаны все шаги вычислений по пред1 (в главе 1 она называлась предок), предпринятые для ответа на этот вопрос. На рис 2.17 показаны соответствующие вычисления по пред2, пред3 и пред4. На рис. 2.17 (с) ясно видно, что работа пред4 — бесперспективна, а рис. 2.17(а) показывает, что пред2 довольно неэффективна по сравнению с пред1: пред2 производит значительно больший перебор и делает больше возвратов по фамильному дереву.

Такое сравнение должно напомнить нам об общем практическом правиле при решении задач: обычно бывает полезным прежде всего попробовать самое простое соображение. В нашем случае все версии отношения предок основаны на двух соображениях:

• более простое — нужно проверить, не удовлетворяют ли два аргумента отношения предок отношению родитель;

• более сложное — найти кого-либо "между" этими двумя людьми (кого-либо, кто связан с ними отношениями родитель и предок).

Из всех четырех вариантов отношения предок, пред1 использует наиболее простое соображение в первую очередь. В противоположность этому пред4 всегда сначала пробует использовать самое сложное. Пред2 и пред3 находятся между этими двумя крайностями. Даже без детального изучения процессов вычислений ясно, что пред1 следует предпочесть просто на основании правила "самое простое пробуй в первую очередь".

Наши четыре варианта процедуры предок можно далее сравнить, рассмотрев вопрос: "На какие типы вопросов может отвечать тот или иной конкретный вариант и на какие не может?" Оказывается, пред1 и пред2 оба способны найти ответ на любой вид вопроса относительно предков; пред4 никогда не находит ответа, а пред3 иногда может найти, иногда нет. Вот пример вопроса, на который пред4 ответить не может:

?- пред3( лиз, джим).

Такой вопрос тоже вводит систему в бесконечную рекурсию. Следовательно и пред3 нельзя признать верным с точки зрения процедурного смысла.

Рис. 2.17. Поведение трех вариантов формулировки отношения предок при ответе на вопрос, является ли Том предком Пат?

2.6.3. Сочетание декларативного и процедурного подходов

В предыдущем разделе было показано, что порядок целей и предложений имеет существенное значение. Более того, существуют программы, которые верны в декларативном смысле, но на практике не работают. Такое противоречие между декларативным и процедурным смыслами может вызвать недовольство. Кто-нибудь спросит: "А почему вообще не забыть о декларативном смысле?" Такое пожелание становится особенно сильным, когда рассматриваются предложения типа:

предок( X, Z) :- предок( X, Z).

Это предложение верно в декларативном смысле, но совершенно бесполезно в качестве рабочей программы.

Причина, по которой не следует забывать о декларативном смысле, кроется в том, что прогресс, достигнутый в технологии программирования, получен на пути продвижения от учета всех процедурных деталей к концентрации внимания на декларативных аспектах, которые обычно легче формулировать и понимать. Сама система, а не программист, должна нести бремя заботы о процедурных деталях. В этом Пролог оказывает некоторую помощь, хотя, как мы видели в данном разделе, помощь лишь частичную: иногда он правильно прорабатывает эти процедурные детали, иногда — нет. Многие придерживаются мнения, что лучше иметь хоть какую-то декларативную семантику, чем никакой (отсутствие декларативной семантики характерно для многих других языков программирования). Практическим следствием такого взгляда является тот факт, что часто довольно легко получить работающую программу, имея программу декларативно корректную. Поэтому практичным следует признать такой подход: сосредоточиться на декларативных аспектах задачи, затем пропустить на машине полученную программу и, если она окажется процедурно неправильной, попытаться изменить порядок следования предложений и целей. 

2.7. Замечания о взаимосвязи между Прологом и логикой

Пролог восходит к математической логике, поэтому его синтаксис и семантику можно наиболее точно описать при помощи логики. Так часто и поступают при обучении этому языку. Однако такой подход к ознакомлению с Прологом предполагает знание читателем определенных понятий математической логики. С другой стороны, знание этих понятий явно необязательно для того, чтобы понять и использовать Пролог в качестве инструмента для практического программирования, а цель данной книги — научить именно этому. Для тех же читателей, которые особенно заинтересуются взаимосвязями между Прологом и логикой, мы сейчас перечислим основные из них, а также приведем некоторые подходящие источники.

Синтаксис Пролога — это синтаксис предложений логики предикатов первого порядка, записанных в так называемой форме предложений (форме, при которой кванторы не выписываются явно), а точнее, в виде частного случая таких предложений — в виде формул Хорна (предложений, имеющих самое большее один положительный литерал). Клоксин и Меллиш (1981 г.) приводят пролог-программу, которая преобразует предложения исчисления предикатов первого порядка в форму предложений. Процедурный смысл Пролога основывается на принципе резолюций, применяющемся для автоматического доказательства теорем, который был предложен Робинсоном в его классической статье (1965 г.). В Прологе используется особая стратегия доказательства теоремы методом резолюций, носящая название SLD. Введение в исчисление предикатов первого порядка и доказательство теорем, основанное на методе резолюций, можно найти у Нильсона (1981 г.). Математические вопросы, касающиеся свойств процедурной семантики Пролога в их связи с логикой, проанализированы Ллойдом (1984 г.).

Сопоставление в Прологе соответствует некоторому действию в логике, называемому унификацией. Мы, однако, избегаем слова "унификация", так как по соображениям эффективности внести в большинстве пролог-систем сопоставление реализовано таким образом, что оно не полностью соответствует унификации (см. упражнение 2.10). Тем не менее, с практической точки зрения, такая приближенная унификация вполне допустима.

Упражнение

2.10. Что будет, если пролог-системе задать такой вопрос:

?- X = f( X).

Успешным или неуспешным будет здесь сопоставление? По определению унификации в логике, сопоставление должно быть неуспешным, а что будет в соответствии с нашим определением сопоставления из раздела 2.2? Попробуйте объяснить, почему многие реализации Пролога отвечают на вышеприведенный вопрос так: