Выбрать главу

Рис. 4.4. Регистры для порта D

Регистр DDRD (Data Direction Register D — регистр D направления передачи данных) имеет 8 бит, каждый из которых определяет режим работы соответствующего контакта — вход или выход. Если бит установлен в значение 1, контакт работает как выход, в противном случае — как вход. Этим регистром управляет функция pinMode. Регистр PORTD используется для установки выходного напряжения на выходе, то есть digitalWrite устанавливает соответствующий бит, 1 или 0, чтобы установить на указанном контакте уровень напряжения HIGH или LOW.

Последний регистр называется PIND (Port Input D — вход порта D). Читая содержимое этого регистра, можно определить, на какие контакты подано напряжение HIGH, а на какие — LOW.

Каждый из трех портов имеет свои три регистра, для порта B они называются DDRB, PORTB и PINB, а для порта C — DDRC, PORTC и PINC.

Очень быстрый вывод цифровых сигналов

Следующий скетч обращается к портам напрямую, без применения pinMode и digitalWrite:

// sketch_04_09_square_ports

byte state = 0;

void setup()

{

  DDRB = B00000100;

  while (true)

  {

    PORTB = B00000100;

    PORTB = B00000000;

  }

}

void loop()

{

}

Скетч должен переключать контакт D10, который связан с портом B, поэтому вначале контакт настраивается на работу в режиме выхода, для чего третий бит справа в регистре DDRB устанавливается в 1. Обратите внимание на то, что B00000100 — это двоичная константа. В главном цикле мы сначала устанавливаем тот же бит в 1, а затем сбрасываем его в 0. Установка бита производится как простое присваивание значения регистру PORTB, как если бы это была обычная переменная.

Этот скетч способен генерировать сигнал с частотой 3,97 МГц (рис. 4.5) — почти 4 млн импульсов в секунду, что почти в 46 раз быстрее, чем с использованием digitalWrite.

Рис. 4.5. Сигнал с частотой 4 МГц, сгенерированный платой Arduino

Сигнал далек от прямоугольной формы из-за переходных процессов, которые вполне ожидаемы на такой частоте.

Еще одно преимущество непосредственного использования регистров порта — возможность вывода сигналов сразу на восемь контактов, что может пригодиться для вывода данных в параллельную шину данных.

Быстрый ввод цифровых сигналов

Тот же прием непосредственного доступа к регистрам можно использовать для увеличения скорости ввода цифровых сигналов. Хотя, если вы предполагаете таким способом определять моменты появления очень коротких импульсов, подумайте о возможности использования прерываний, они являются лучшим решением этой задачи (см. главу 3).

Прямой доступ к порту может пригодиться, например, когда требуется прочитать состояние сразу нескольких контактов. Следующий скетч читает все контакты, связанные с портом B (с D8 по D13), и выводит результат в монитор последовательного порта в виде двоичного числа (рис. 4.6).

Рис. 4.6. Чтение состояния сразу восьми контактов

// sketch_04_010_direct_read

byte state = 0;

void setup()

{

  DDRB = B00000000; // все контакты на ввод

  Serial.begin(9600);

}

void loop()

{

  Serial.println(PINB, 2);

  delay(1000);

}

Сбросом всех битов в регистре DDRB в 0 соответствующие контакты на плате настраиваются на работу в режиме входов. В цикле вызывается функция Serial.println, которая посылает число в монитор последовательного порта. Чтобы число посылалось в двоичной форме, а не в десятичной, как обычно, передается дополнительный аргумент 2.

Увеличение скорости ввода аналоговых сигналов

Давайте изменим скетч, который выполняет хронометраж, чтобы узнать, как долго работает analogRead, а потом попробуем ее ускорить:

// sketch 04_11_analog

void setup()

{

  Serial.begin(9600);

  while (! Serial) {};

  Serial.println("Starting Test");

  long startTime = millis();

  // Далее следует код тестирования

  long  i = 0;

  for (i = 0; i < 1000000; i ++)

  {

    analogRead(A0);

  }

  // конец кода, выполняющего тестирование

  long endTime = millis();

  Serial.println("Finished Test");

  Serial.print("Seconds taken: ");

  Serial.println((endTime — startTime) / 1000l);

}

void loop()

{

}

На плате Arduino Uno этот скетч выполняется 112 с. То есть Uno выполняет в секунду около 9000 операций чтения аналоговых сигналов.

Функция analogRead использует АЦП, имеющийся в микроконтроллере на плате Arduino. В Arduino используется тип АЦП, который называют АЦП с последовательной аппроксимацией. Он действует методом постепенного приближения, сравнивая аналоговый сигнал с опорным напряжением. АЦП управляется таймером, поэтому есть возможность ускорить преобразование, увеличив частоту.

Следующий скетч увеличивает частоту АЦП со 128 кГц до 1 МГц, что должно увеличить скорость чтения в восемь раз:

// sketch 04_11_analog_fast

const byte PS_128 = (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);

const byte PS_16 = (1 << ADPS2);

void setup()

{

  ADCSRA &= ~PS_128;  // сбросить масштаб 128

  ADCSRA |= PS_16;    // добавить масштаб 16 (1 МГц)

  Serial.begin(9600);

  while (! Serial) {};

  Serial.println(PS_128, 2);

  Serial.println(PS_16, 2);

  Serial.println("Starting Test");

  long startTime = millis();

  // Далее следует код тестирования

  long  i = 0;

  for (i = 0; i < 1000000; i ++)

  {

    analogRead(A0);

  }

  // конец кода, выполняющего тестирование

  long endTime = millis();

  Serial.println("Finished Test");

  Serial.print("Seconds taken: ");

  Serial.println((endTime — startTime) / 1000l);

}

void loop()

{

}

Теперь скетч выполняется всего 17 с, то есть, грубо, в 6,5 раза быстрее, а скорость измерений увеличилась до 58 000 в секунду. Этого вполне достаточно для оцифровки аудиосигнала, хотя при наличии всего 2 Кбайт ОЗУ вы не сможете записать большой фрагмент!

Если первоначальный вариант скетча sketch_04_11_analog запустить в Arduino Due, он справится с работой за 39 с. Однако в модели Due не получится использовать трюк с регистрами портов, так как она имеет совсем другую архитектуру.

В заключение

В этой главе мы попытались выжать все до последней капли из наших скудных 16 МГц. В следующей главе переключим внимание на снижение потребления электроэнергии платой Arduino, что очень важно для проектов, где плату предполагается питать от аккумуляторов или солнечных батарей.

5. Снижение потребления электроэнергии

Справедливости ради следует отметить, что и без применения специальных мер платы Arduino потребляют не особенно много электроэнергии. Обычно Arduino Uno потребляет ток около 40 мА, что при питании через разъем USB с напряжением 5 В составляет всего 200 мВт. Это означает, что она может благополучно работать около четырех часов, питаясь от аккумулятора 9 В (емкостью 150 мА·ч).

Потребление электроэнергии становится важным аспектом, когда плата Arduino должна работать длительное время, питаясь от аккумулятора, как в системах удаленного мониторинга или управления, когда аккумуляторы или солнечные батареи остаются единственно возможным источником питания. Например, недавно на основе платы Arduino я реализовал автоматическое управление дверью в птичник, использовав небольшую солнечную панель для зарядки аккумулятора, емкости которого достаточно только для того, чтобы открыть и закрыть дверь два раза в день.

Потребление электроэнергии платами Arduino