Уменьшение используемого объема флеш-памяти
По окончании процедуры компиляции скетча в нижней части окна Arduino IDE появится примерно такое сообщение:
Скетч использует 1344 байт (4%) памяти устройства. Всего доступно 32 256 байт.
Эта строка сообщает точный объем флеш-памяти в Arduino, который будет занят скетчем, благодаря чему вы всегда будете знать, насколько близко подошли к пределу в 32 Кбайт. Оказавшись близко к предельному значению, нужно позаботиться об оптимизации использования флеш-памяти. В этом вам помогут рассматриваемые далее рекомендации.
Используйте константы
Многие, стараясь дать имена контактам, определяют для этого переменные, как показано ниже:
int ledPin = 13;
Если вы не собираетесь изменять номер контакта с именем ledPin в процессе выполнения скетча, то вместо переменной можно использовать константу. Просто добавьте слово const в начало объявления:
const int ledPin = 13;
Это поможет сэкономить 2 байта ОЗУ плюс 2 байта флеш-памяти при каждом использовании константы. Для часто используемых переменных экономия может достигать нескольких десятков байтов.
Удалите ненужные трассировочные вызовы
В процессе отладки скетчей для Arduino принято вставлять в код команды Serial.println, помогающие увидеть значения переменных в разных точках программы и определить источники ошибок. Эти команды потребляют значительный объем флеш-памяти. Любое использование Serial.println требует включения в скетч примерно 500 байт библиотечного кода. Поэтому, убедившись в безупречной работе скетча, удалите или закомментируйте все такие команды.
Откажитесь от использования загрузчика
В главе 2 рассказывалось, как запрограммировать микроконтроллер непосредственно через контакты ICSP на плате Arduino с применением аппаратных программаторов. Такой подход поможет сэкономить пару килобайт, так как не требует установки загрузчика.
Статическое и динамическое размещение в памяти
Если вы, подобно автору книги, имеете опыт разработки крупномасштабных систем на таких языках, как Java или C#, вам наверняка приходилось создавать объекты во время выполнения и позволять сборщику мусора освобождать занимаемую ими память без вашего участия. Этот подход к программированию в принципе непригоден для программ, выполняющихся на микропроцессорах, которые имеют всего 2 Кбайт памяти. Ведь в Arduino просто нет никакого сборщика мусора, и, что более важно, в программах, которые пишутся для Arduino, выделение и освобождение памяти во время выполнения редко бывают необходимы.
Ниже приводится пример объявления статического массива, как это обычно делается в скетчах:
// sketch_06_04_static
int array[100];
void setup()
{
array[0] = 1;
array[50] = 2;
Serial.begin(9600);
Serial.println(array[50]);
}
void loop()
{
}
Объем памяти, занимаемой массивом, известен уже на этапе компиляции скетча, поэтому компилятор может зарезервировать для массива необходимый объем памяти. Второй пример, приведенный ниже, также создает массив того же размера, но выделяет память для него во время выполнения из пула доступной памяти. Обратите внимание на то, что версии Arduino IDE ниже 1.0.4 не поддерживают malloc.
// sketch_06_03_dynamic
int *array;
void setup()
{
array = (int *)malloc(sizeof(int) * 100);
array[0] = 1;
array[50] = 2;
Serial.begin(9600);
Serial.println(array[50]);
}
void loop()
{
}
В начале скетча определяется переменная int *array. Символ * сообщает, что это указатель на целочисленное значение (или в данном случае массив целых чисел), а не простое значение. Объем памяти, занимаемой массивом, неизвестен, пока не будет выполнена следующая строка в функции setup:
array = (int *)malloc(sizeof(int) * 100);
Команда malloc (memory allocate — выделить память) выделяет память в области ОЗУ, которую называют кучей (heap). В качестве аргумента ей передается объем памяти в байтах, который следует выделить. Так как массив хранит 100 значений типа int, требуется выполнить некоторые расчеты, чтобы определить размер массива в байтах. В действительности можно было бы просто передать функции malloc число 200 в аргументе, потому что известно, что каждое значение типа int занимает 2 байта памяти, но использование функции sizeof гарантирует получение правильного числа в любом случае.
После выделения памяти массивом можно пользоваться точно так же, как если бы память для него была выделена статически. Динамическое распределение памяти позволяет отложить принятие решения о размере массива до фактического запуска скетча, и это единственное преимущество данного подхода.
Однако, используя прием динамического распределения памяти, легко оказаться в ситуации, когда память выделяется, но не освобождается, из-за чего скетч может быстро исчерпать имеющуюся память. Исчерпание памяти может вызвать зависание Arduino. Но если вся память выделяется статически, такого не происходит.
Обратите внимание на то, что даже мне, разработавшему не одну сотню проектов на Arduino, сложно найти вескую причину, оправдывающую прием динамического выделения памяти в Arduino.
Строки
Строки (текста) намного реже используются в скетчах для Arduino, чем в обычных программах. В обычных программах строки чаще всего применяются для взаимодействий с пользователями или базами данных, где текст является естественным средством передачи информации.
Многие программы для Arduino вообще не нуждаются в текстовом представлении данных или используют его только в командах Serial.println для нужд отладки.
В Arduino поддерживаются два основных метода использования строк: старый метод — массивы элементов типа char и новый метод с применением библиотеки String Object.
Массивы элементов типа char
Когда в скетче определяется строковая константа, такая как
char message[] = "Hello World";
создается статический массив элементов типа char, содержащий 12 символов. Именно 12, а не 11, по числу букв в строке «Hello World», потому что в конец добавляется заключительный нулевой символ (\0), отмечающий конец строки. Такое соглашение для строк символов, принятое в языке C, позволяет использовать массивы символов большего размера, чем предполагалось вначале (рис. 6.4). Каждая буква, цифра или другой символ имеет код, который называют значением ASCII.
Рис. 6.4. Массив элементов типа char в стиле языка C с завершающим нулевым символом
Обратите внимание на то, что часто используется немного иной синтаксис записи строковых констант:
char *message = "Hello World";
Этот синтаксис действует подобным образом, но определяет message как указатель на символ (первый символ в массиве).
Форматированный вывод строк несколькими командами print
Часто строки необходимы, только чтобы вывести сообщение на жидкокристаллический дисплей или в качестве параметра Serial.println. Многие могут подумать, что в основном требуется только возможность объединения строк и преобразования чисел в строки. Например, рассмотрим конкретную проблему — как на жидкокристаллическом дисплее отобразить сообщение «Temp: 32 C». Вы могли бы предположить, что для этого нужно объединить число 32 со строкой "Temp: " и затем добавить в конец строку " C". И действительно, программисты с опытом использования языка Java могли бы попытаться написать на C следующий код: