Выбрать главу

Однако есть несколько препятствий, мешающих использованию флеш-памяти для хранения данных.

• Флеш-память в Arduino гарантирует сохранность данных только для 100 000 циклов записи, после чего она становится бесполезной.

• Флеш-память хранит программу, поэтому, если в расчеты вкрадется ошибка и часть программы окажется затертой данными, в скетче могут произойти невероятные события.

• Флеш-память содержит также загрузчик, уничтожение или искажение которого может превратить плату Arduino в «кирпич», после чего восстановить ее можно будет только с помощью аппаратного программатора (как описывалось в главе 2).

• Записывать данные во флеш-память можно только блоками по 64 байта.

Несмотря на все сказанное, в целом довольно безопасно использовать флеш-память для хранения постоянных данных, не изменяющихся в процессе выполнения скетча.

Для платы Arduino Due была создана сторонняя библиотека, позволяющая выполнять операции чтения/записи с флеш-памятью, чтобы компенсировать отсутствие ЭСППЗУ в этой модели. Более полную информацию об этом проекте можно получить по адресу http://pansenti.wordpress.com/2013/04/19/simple-flash-library-for-arduino-due/.

Самый простой способ создать строковую константу, хранящуюся во флеш-памяти, — использовать функцию F, упоминавшуюся в одном из предыдущих разделов. Напомню ее синтаксис:

Serial.println(F("Program Started"));

Этот прием работает только при использовании строковых констант непосредственно в вызове функции вывода. Нельзя, например, присвоить результат указателю на тип char.

Более гибкий, но более сложный способ заключается в использовании директивы PROGMEM (Program Memory — память программы) для сохранения любых структур данных. Однако данные должны быть постоянными — они не могут изменяться в процессе выполнения сценария.

Следующий пример иллюстрирует, как можно определить массив целых чисел (int), хранящийся во флеш-памяти:

// sketch_06_10_PROGMEM_array

#include <avr/pgmspace.h>

PROGMEM int value[] = {10, 20, 25, 25, 20, 10};

void setup()

{

  Serial.begin(9600);

  for (int i = 0; i < 6; i++)

  {

    int x = pgm_read_word(&value[i]);

    Serial.println(x);

  }

}

void loop()

{

}

Директива PROGMEM перед объявлением массива гарантирует, что он будет храниться только во флеш-памяти. Но прочитать значение элемента из такого массива можно только с помощью функции pgm_read_word из биб­лиотеки avr/pgmspace:

int x = pgm_read_word(&value[i]);

Символ & перед именем массива в параметре указывает, что функции передается адрес данного элемента массива во флеш-памяти, а не его значение.

Функция pgm_read_word читает из флеш-памяти слово (2 байта). В библио­теке имеются также функции pgm_read_byte и pgm_read_dword, возвращающие 1 и 4 байта соответственно.

Использование SD-карты

Несмотря на то что сами платы Arduino не имеют слота для SD-карт, некоторые платы расширения, включая Ethernet и MP3 (рис. 6.6), имеют слоты для карт SD или microSD.

Для подключения карт SD используется интерфейс SPI (обсуждается в главе 9). К счастью, чтобы использовать карту SD с платой Arduino, не требуется писать низкоуровневый код для взаимодействия с интерфейсом SPI, так как в состав Arduino IDE входит специализированная библиотека с простым названием SD.

Рис. 6.6. Плата расширения MP3 со слотом для карты microSD

Рис. 6.7. Результат работы примера Cardinfo

Эта библиотека включает множество примеров скетчей, выполняющих разные операции с картой SD, включая поиск информации о карте SD и ее вывод в монитор последовательного порта (рис. 6.7).

Запись на карту SD выполняется очень просто, как показано в следующем фрагменте кода:

File dataFile = SD.open("datalog.txt", FILE_WRITE);

// Если файл существует, записать в него

if(dataFile) {

  dataFile.println(dataString);

  dataFile.close();

  // вывести также в монитор последовательного порта

  Serial.println(dataString);

}

В заключение

В этой главе вы познакомились со всеми аспектами использования памяти и хранения данных в Arduino. В следующих главах мы займемся исследованием приемов программирования различных последовательных интерфейсов в Arduino, начав с шины I2C.

7. Интерфейс I2C

Интерфейсная шина I2C (произносится «и квадрат си») — стандартный способ подключения периферийных устройств к микроконтроллерам. Иногда интерфейс I2C называют двухпроводным интерфейсом (Two Wire Interface, TWI). Все платы Arduino имеют хотя бы один интерфейс I2C, к которому можно подключать широкий диапазон периферийных устройств. Некоторые из таких устройств представлены на рис. 7.1.

Все три устройства в верхнем ряду на рис. 7.1 являются модулями отображения информации, выпускаемыми компанией Adafruit. В нижнем ряду слева находится модуль УКВ-приемника TEA5767. Эти модули можно приобрести на сайте eBay или где-то в другом месте за несколько долларов. Приобретая модуль TEA5767, вы получаете полноценный приемник УКВ, который можно настроить на определенную частоту командами через интерфейс I2C. В центре находится модуль часов реального времени (Real-Time Clock, RTC), включающий микросхему обслуживания шины I2C и кварцевый резонатор, обеспечивающий высокую точность измерения времени. Установив текущие время и дату через интерфейс I2C, вы сможете в любой момент прочитать текущие время и дату через тот же интерфейс I2C. Этот модуль включает также литиевую батарейку с длительным сроком службы, обеспечивающую работу модуля даже в отсутствие электропитания от внешнего источника. Наконец, справа находится 16-канальный ШИМ/сервопривод, добавляющий к вашей плате Arduino 16 дополнительных аналоговых выходов.

Рис. 7.1. Устройства с интерфейсом I2C

Стандарт I2C определяется как стандарт шины, потому что допускает подключение множества устройств друг к другу. Например, если вы уже подключили дисплей к микроконтроллеру, к той же паре контактов на «ведущем» устройстве можно подключить целое множество «ведомых» устройств. Плата Arduino выступает в роли «ведущего» устройства, а все «ведомые» устройства имеют уникальные адреса, идентифицирующие устройства на шине.

На рис. 7.2 изображена возможная схема подключения к плате Arduino двух компонентов I2C: часов реального времени и модуля дисплея.

Через интерфейс I2C можно также соединить две платы Arduino и организовать обмен данными между ними. В этом случае одна из плат должна быть настроена как ведущее устройство, а другая — как ведомое.

Рис. 7.2. Arduino управляет двумя устройствами I2C

Аппаратная часть I2C

Электрически линии соединения интерфейса I2C могут действовать подобно цифровым выходам или входам (их также называют выводами с тремя состояниями). В третьем состоянии линии соединения не находятся ни в одном из состояний, HIGH или LOW, а имеют плавающий уровень напряжения. Кроме того, выходы являются логическими элементами с открытым коллектором, то есть они требуют использования подтягивающего сопротивления. Эти сопротивления должны иметь номинал 4,7 кОм, и только одна пара контактов на всей шине I2C должна подключаться через подтягивающее сопротивление к шине питания 3,3 В или 5 В в зависимости от уровня напряжения, на котором действует шина. Если какое-то устройство на шине имеет другое напряжение питания, для его подключения необходимо использовать преобразователь уровня напряжения. Для шины I2C можно использовать модули двунаправленного преобразования, такие как BSS138, выпускаемые компанией Adafruit (www.adafruit.com/products/757).