Выбрать главу

void setup()

{

  mySerial.begin(9600);

  mySerial.println("Hello, world?");

}

Полное описание библиотеки SoftwareSerial можно найти по адресу http://arduino.cc/en/Reference/SoftwareSerial9.

Примеры использования последовательного интерфейса

В этом разделе демонстрируется несколько примеров использования УАПП и библиотеки SoftwareSerial.

Передача из компьютера в Arduino через USB

В первом примере демонстрируется применение монитора последовательного порта для передачи команд в плату Arduino. Раз в секунду Arduino будет посылать значение, прочитанное с аналогового входа A0, и одновременно ждать получения односимвольных команд g (go — вперед) и s (stop — стоп), управляющих передачей прочитанных значений. На рис. 10.3 изображено окно монитора последовательного порта с данными, полученными во время работы скетча.

Рис. 10.3. Окно монитора последовательного порта с данными, полученными от платы Arduino

В данном случае из-за того, что вывод производится непосредственно в окно монитора последовательного порта, данные, прочитанные с аналогового входа, передаются не в двоичном, а в текстовом виде.

Далее приводится скетч для этого примера:

// sketch_10_01_PC_to_Arduino

const int readingPin = A0;

boolean sendReadings = true;

void setup()

{

  Serial.begin(9600);

}

void loop()

{

  if (Serial.available())

  {

    char ch = Serial.read();

    if (ch == 'g')

    {

      sendReadings = true;

    }

    else if (ch == 's')

    {

      sendReadings = false;

    }

  }

  if (sendReadings)

  {

    int reading = analogRead(readingPin);

    Serial.println(reading);

    delay(1000);

  }

}

Функция loop проверяет получение данных и, если они имеются, читает их по одному байту как символы. После полученный байт сравнивается с командами 's' и 'g', и переменной sendReadings присваивается соответствующее значение.

Затем по значению переменной sendReadings определяется необходимость чтения аналогового входа и вывода результатов. Если флаг sendReadings имеет значение true, перед отправкой следующего значения выполняется задержка на одну секунду.

Использование функции delay означает, что значение sendReadings сможет измениться только в следующей итерации функции loop. В данном скетче это не является проблемой, но в других ситуациях может потребоваться использовать другое решение, не блокирующее работу функции loop. Подробнее о подобных решениях рассказывается в главе 14.

Передача из Arduino в Arduino

Второй пример иллюстрирует передачу данных из одной платы Arduino Uno в другую. В данном случае одна плата Arduino передает значение, прочитанное с входа A1, другой плате, которая затем по этому значению определяет частоту мигания встроенного светодиода L.

На рис. 10.4 изображена схема соединения плат.

Рис. 10.4. Две платы Ardiono Uno взаимодействуют через последовательный порт

Контакт Tx на одной плате Arduino должен быть подключен к контакту Rx на другой и наоборот. В этом примере обе платы используют библиотеку SoftwareSerial, контакты 8 служат линией Rx, а контакты 9 — линией Tx.

Контакты GND обеих плат должны быть соединены. Чтобы плата-отправитель могла служить источником питания для платы-получателя, необходимо также соединить их контакты 5V. К плате-отправителю подключено переменное сопротивление, соединяющее гнезда A0 и A2. Настроив контакты A0 и A2 на работу в режиме цифровых выходов и установив на выходе A2 уровень HIGH, можно изменять уровень напряжения на контакте A1 в диапазоне от 0 до 5 В, вращая шток резистора, и тем самым управлять частотой мигания светодиода на другой плате Arduino.

Далее приводится скетч для платы-отправителя:

// sketch_10_02_Adruino_Sender

#include "SoftwareSerial.h"

const int readingPin = A1;

const int plusPin = A2;

const int gndPin = A0;

SoftwareSerial sender(8, 9); // RX, TX

void setup()

{

  pinMode(gndPin, OUTPUT);

  pinMode(plusPin, OUTPUT);

  digitalWrite(plusPin, HIGH);

  sender.begin(9600);

}

void loop()

{

  int reading = analogRead(readingPin);

  byte h = highByte(reading);

  byte l = lowByte(reading);

  sender.write(h);

  sender.write(l);

  delay(1000);

}

Перед отправкой прочитанное 16-битное значение (int) разбивается на старший и младший байты, затем оба байта посылаются в последовательный интерфейс командой write. Команды print и println преобразуют свой аргумент в строку, но команда write посылает байт в двоичном виде.

Далее приводится скетч для платы-получателя:

// sketch_10_03_Adruino_Receiver

#include "SoftwareSerial.h"

const int ledPin = 13;

int reading = 0;

SoftwareSerial receiver(8, 9); // RX, TX

void setup()

{

  pinMode(ledPin, OUTPUT);

  receiver.begin(9600);

}

void loop()

{

  if (receiver.available() > 1)

  {

    byte h = receiver.read();

    byte l = receiver.read();

    reading = (h << 8) + l;

  }

  flash(reading);

}

void flash(int rate)

{

  // 0 — редко, 1023 — очень часто

  int period = (50 + (1023 — rate) / 4);

  digitalWrite(ledPin, HIGH);

  delay(period);

  digitalWrite(ledPin, LOW);

  delay(period);

}

Принимающий скетч ждет, пока будет получено не менее 2 байт, и затем восстанавливает значение типа int, сдвигая старший байт на 8 бит влево и прибавляя к результату младший байт.

Для передачи данных с более сложной структурой можно использовать библиотеку EasyTransfer: www.billporter.info/2011/05/30/easytransfer-arduino-library/.

Несмотря на то что в этом примере контакт Tx одной платы Arduino связан проводом с контактом Rx другой, для взаимодействий точно так же можно использовать беспроводные соединения. Многие модули беспроводной связи действуют прозрачно, то есть как если бы связь осуществлялась по проводам.

Модуль GPS

В заключительном примере демонстрируется использование последовательного интерфейса ТТЛ для чтения географических координат (широты и долготы) из модуля глобальной навигационной системы (Global Positioning System, GPS), которые затем форматируются и выводятся в монитор последовательного порта (рис. 10.5).

Рис. 10.5. Чтение данных из модуля GPS в плату Arduino

Связь с модулем GPS возможна только в одну сторону, поэтому достаточно соединить вывод Tx модуля с выводом Rx на плате Arduino. В примере используется модуль GPS, выпускаемый компанией Sparkfun Venus (www.sparkfun.com/products/11058). Подобно большинству других модулей GPS, он имеет последовательный интерфейс ТТЛ и раз в секунду посылает сообщения на скорости 9600 бод.

Формат сообщений соответствует стандарту национальной ассоциации морской электроники (National Marine Electronics Association, NMEA). Сообщение — это текстовая строка, завершающаяся символом перевода строки, с полями, разделенными запятыми. Далее показано, как выглядит типичное сообщение:

$GPRMC,081019.548,A,5342.6316,N,00239.8728,W,000.0,079.7,110613,,,A*76

Поля в данном примере имеют следующие значения:

• $GPRMC — тип сообщения;

• 081019.548 — время (очень точное) в 24-часовом формате, 8:10:19.548;

• 5342.6316, N — широта, умноженная на 100, то есть 53,426316 градуса северной широты;

• 00239.8728,W — долгота, умноженная на 100, то есть 0,2398728 градуса западной долготы;

• 000.0 — скорость;

• 079.7 — курс 79,7 градуса;

• 110613 — дата, 11 июня 2013.

Остальные поля для данного примера не имеют значения.

ПРИМЕЧАНИЕ

Полный список сообщений NMEA GPS можно найти по адресу http://aprs.gids.nl/nmea/.

Далее приводится скетч для этого примера:

#include <SoftwareSerial.h>

SoftwareSerial gpsSerial(10, 11); // RX, TX (TX не используется)