Выбрать главу

Обобщая изложенные факты, Н. А. Кудрявцев создал свою магматическую гипотезу происхождения нефти. Согласно его взглядам, в условиях высоких температур и давлений в мантии Земли из углерода и водорода вначале формируются углеводородные радикалы СН, СН2 и СН3. Они движутся в веществе мантии, подчиняясь перепаду давления: из области высоких в область низких давлений. В зонах глубинных разломов снижение давления особенно ощутимо, именно сюда должны устремляться, по И. А. Кудрявцеву, мантийные углеводороды. Поднимаясь в земную кору, в менее нагретых зонах они соединяются друг с другом и с водородом, образуя различные углеводороды. В недрах Земли могут происходить и сопутствующие реакции, приводящие к образованию дополнительных углеводородов из окиси углерода и водорода, из карбидов различных металлов и воды. По мнению Н. А. Кудрявцева, разнообразие реакций обеспечивает разнообразие нефтей в природе.

Движение углеводородов к земной поверхности происходит по системам трещин, оперяющих глубинные разломы. В результате в пористых породах осадочного чехла скапливается несколько залежей, образующих не одно месторождение, а целые зоны нефтегазонакопления. Так, Н. А. Кудрявцев увязал воедино разрозненные до того представления «неоргаников». Исходя из своих теоретических воззрений, он делал и практические выводы, в частности предлагал искать залежи нефти в зонах глубинных разломов, включая в объект поиска и магматические породы фундамента. Н. А. Кудрявцев считал, что если залежь выявлена в верхних горизонтах осадочного чехла, то внизу обязательно должны быть новые залежи, может быть даже более богатые «черным золотом». В результате и глубоко залегающие горизонты земной коры (до — глубины 6–7 км и более) стали рассматриваться как перспективные объекты, что имело большое практическое значение и было в ряде мест земного шара подтверждено сверхглубоким бурением.

Теоретические доводы Н. А. Кудрявцева, ставившие порой в тупиковое положение «органиков», и его практические рекомендации вдохновили сторонников неорганического синтеза углеводородов. Немаловажную роль сыграли убежденность исследователя и бойцовские качества его характера. Незадолго до своей кончины в одной из последних статей, посвященной неорганическому синтезу углеводородов, Н. А. Кудрявцев [1971] писал: «Сторонники этой гипотезы, которых становится все больше, уверены, что именно за ней — будущее» (с. 72). Действительно, в Ленинграде, Киеве, Львове сформировались целые научные коллективы, развивающие и обогащающие неорганические воззрения. Наиболее существенный вклад в развитие этих идей внесли В. Б. Порфирьев, П. Н. Кропоткин, Г. Н. Доленко, И. В. Гринберг, Э. Б. Чекалюк, Н. С. Бескровный, В. А. Краюшкин, Б. М. Валяев, А. И. Кравцов, И. Я. Фурман и другие исследователи.

Парад «неоргаников»

Академик АН УССР В. Б. Порфирьев многие годы возглавлял украинскую школу «неоргаников». Основной упор в своих исследованиях он делал на изучение и обобщение фактов приуроченности скоплений нефти и газа к породам фундамента на Украине, Волго-Урале и в Западной Сибири. В частности, по последнему региону было проанализировано почти 150 площадей, где установлена нефтегазоносность в трещиноватых и выветренных породах фундамента. На основании этого В. Б. Порфирьев и его коллеги пришли к заключению, что кристаллические, метаморфические и вулканические породы фундамента Западной Сибири представляют самостоятельный объект на нефть и газ. В целях поиска глубинных залежей нефти они рекомендовали разбуривать фундамент на глубину 1–2 км, располагая скважины в зонах глубинных разломов и особенно в местах их пересечения.

Другой вывод В. Б. Порфирьева заключался в единовременном акте творения нефти. Ученый считал, что образование всех залежей углеводородов в мире произошло в миоцен-четвертичное время (последние 13–10 млн лет). По каким-то причинам именно в тот период геологической истории Земли произошло раскрытие зон глубинных разломов, по ним устремились в осадочные пласты верхних сфер литосферы жидкие и газообразные углеводороды, источник которых находился в области мантии. Несостоятельность вывода очевидна, так как он противоречит имеющимся данным о времени формирования залежей нефти и газа.

В середине 60-х годов проводились серьезные термодинамические исследования, задачей которых было научное обоснование возможности образования и существования в глубоких недрах Земли «нежных» углеводородных соединений. Дело в том, что углеводороды — это термически неустойчивые образования. При высоких температурах они распадаются на радикалы и даже на химические элементы — углерод и водород; деструкция углеводородов происходит также и в условиях сверхвысоких давлений. Требовалось объяснить, как же могут образовываться и существовать углеводородные цепи в столь неподходящих для себя глубинных условиях.

Термодинамическому обоснованию глубинного происхождения нефти были посвящены работы львовского ученого Э. Б. Чекалюка. По его мнению, термической деструкции углеводородов препятствуют огромные давления (десятки тысяч атмосфер) мантии Земли. Его исследования базировались на математическом физико-химическом моделировании состояния термодинамического равновесия углеводородных систем в геотермобарических условиях. Главные выводы ученого сводились к тому, что с увеличением глубины геостатическое давление тормозит процесс термической деструкции нефти. Теоретические исследования группового состава глубинной нефти, проведенные львовскими учеными, показали, что с глубиной молекулы углеводородных соединений могут укрупняться. В верхней части астеносферы (глубина до 100 км) в равновесной системе содержится в основном метан. По мере возрастания глубины в составе углеводородов должны появляться гомологи метана, затем непредельные соединения, нафтены и ароматика, на больших глубинах — кислородные, сернистые и азотистые соединения.

Термодинамическими расчетами доказывается также, что содержание определенной группы соединений в глубинных нефтях вначале будет увеличиваться с глубиной до некоторого максимального значения, а затем падать. Максимум содержания метана в астеносфере должен располагаться на глубине 100–120 км; алканов — 120–170, нафтенов — 150–230, ароматических соединений — до 260 км. Таким образом, увеличение давления стимулирует полимеризацию и конденсацию углеводородов в крупные углеводородные молекулы. По представлению Э. Б. Чекалюка, оптимальные геотермобарные условия для синтеза нефти имеются в пределах астеносферы. На больших глубинах залегания астеносферы могла бы образовываться тяжелая нефть, на меньших — легкая или газоконденсат. Автор этой гипотезы доказывает, что в осадочном покрове углеводородные системы оказываются термически нестойкими и должны испытывать деструктивные процессы.

Идея о связи месторождений нефти и газа с глубиной залегания астеносферы находит свое развитие в трудах геофизиков В. Б. Сологуба и А. Д. Чекунова. На примере геологии Украины они установили, что крупные прогибы и впадины, которые, как правило, нефтегазоносны, располагаются в областях с приближенным к земной поверхности залеганием астеносферы и, следовательно, с относительно утоненной корой. Напротив, там, где мощность коры увеличивается и поверхность астеносферы погружена, месторождения нефти и газа исчезают. Этим в какой-то степени термодинамическая концепция Э. Б. Чекалюка подкреплялась геологическими данными.

Для опытной проверки физико-химической математической модели был поставлен эксперимент прямого высокотемпературного синтеза углеводородов на установках для синтеза алмазов в условиях высоких давлений и температур до 7×103 МПа и 2000 К (свыше 1700 °C). Из смеси исходных реагентов, куда входили природные карбонаты и гидраты, были получены углеводородные смеси от метана до гексана и даже следы гептана. В природных условиях, по мнению Э. Б. Чекалюка, донором углерода и водорода могут быть вода и углекислота, содержащиеся в веществе астеносферы в растворенном состоянии. Подводящими каналами углеводородных эманаций из астеносферы в осадочные слои земной коры служат глубинные разломы.