Выбрать главу

За рубежом придают большое значение установленному факту истечения метановых газов со дна океана. В США, например, уже несколько лет по линии Национальной академии наук ежегодно выделяется до 5 млн долл, на исследования по оценке ресурсов эндогенного метана.

Приведенные факты тут же были взяты на вооружение «неорганиками». Они, казалось бы, хорошо увязывались с рассмотренным выше представлением П. Н. Кропоткина, Б. М. Валяева и др. о газовом дыхании Земли. Однако не будем спешить с выводами. Отметим только, что изучение Мирового океана дало новую пищу для дискуссии по проблеме происхождения нефти. Но для правильной и объективной трактовки этих данных вернемся к представлениям В. В. Федынского, О. Г. Сорохтина и С. А. Ушакова, о которых упоминалось в самом начале настоящего раздела.

Нефтегазообразование по О. Г. Сорохтину

Мысль о возможности образования нефти в зонах субдукции наиболее полно и плодотворно разработана в трудах О. Г. Сорохтина, доктора физико-математических наук, руководителя отдела Института океанологии АН СССР.

По О. Г. Сорохтину, образование нефти объясняется возгонкой и термолизом биогенных веществ, затянутых вместе с океаническими осадками в зону субдукции, где происходит поддвиг океанической плиты литосферы под континентальную. Здесь необходимо пояснить, каким образом породы осадочного слоя океана могут быть затянуты в зону поддвига литосферных плит.

Вначале, когда гипотеза литосферных плит только завоевывала умы геологов, специалисты не задавались вопросом: а что происходит в зоне поддвига? Позднее противники этой концепции подметили: если бы происходил процесс поддвига, то в глубоководном желобе должна была образовываться целая «куча» осадков мощностью около 20 км. На самом деле этого не наблюдалось. Лишь в некоторых желобах мощность осадков измерялась 1–4 км, а у большинства она не превышала 1 км. Далее было установлено, что в пределах глубоководных желобов скорость осадконакопления высокая — несколько сантиметров за 1 тыс. лет. Значит, за несколько десятков миллионов лет любой желоб оказался бы буквально засыпанным осадками, даже без учета сгружения в него массы осадков, приносимых конвейером пододвигаемой плиты. В действительности глубоководные желоба в большинстве своем совершенно не заполнены осадками, хотя существуют многие десятки и даже сотни миллионов лет. Следовательно, должен действовать эффективный механизм удаления осадков с поверхности дна. Таким процессом, по мнению Л. И. Лобковского и О. Г. Сорохтина, является затягивание осадков в зону поддвига плит. «Механизм затягивания осадков в зону поддвига жестких плит, — пишут исследователи, — полностью аналогичен механизму попадания жидких смазочных масел в зазоры между трущимися жесткими деталями в различных технических устройствах и машинах» [Геофизика океана, 1979, с. 212].

Расчеты, выполненные этими учеными, показали, что в том случае, когда ширина зазора между плитами в 2–3 раза больше мощности осадочного слоя океанической коры перед зоной поддвига, то осадки будут проскальзывать в зазор и попадать в мантию. Если же ширина зазора будет меньше, то осадки станут выжиматься из зоны поддвига и приращиваться к противоположному от океана склону желоба. В этом случае будет происходить образование аккреционной призмы, или линзы. Она может увеличивать свои размеры, постепенно закрывать глубоководный желоб, который будет как бы отодвигаться в сторону открытого океана. Осадки, попавшие в зазор между движущимися плитами, подвергаются воздействию интенсивного сжатия, повышенного давления и прогрева, поэтому в них процессы диагенеза и катагенеза протекают значительно быстрее, чем в обычных условиях. Этот очень важный вывод пригодится нам в дальнейших рассуждениях.

Теоретические расчеты Л. И. Лобковского и О. Г. Сорохтина были подтверждены и геофизическими исследованиями. Сейсмический разрез, проведенный в начале 70-х годов вкрест простирания Курильского глубоководного желоба, доказал, что слой океанических осадков проходит под внешний край островной дуги. Это явление, по уже на примере подножия Малых Антильских островов, было подтверждено бурением в 1981 г.

Рис. 11. Схематический разрез континентальной окраины Малых Антильских островов

1 — мезозойское основание вулканической дуги; 2 — океаническая кора; 3 — субдукционный комплекс; 4– грязевые вулканы

Таким образом, в зоне поддвига может происходить проскальзывание осадочного слоя океанической коры в мантию Земли или же приращивание отдельных пакетов (чешуй) этого слоя к внутреннему склону желоба с образованием аккреционной призмы (рис. 11).

В океанических осадках, по данным О. К. Борцовского, только 5 % органического вещества составляют нефтеподобные соединения. В остальном биогенном веществе содержится 55–65 % органического углерода и около 4 % водорода, что в пересчете на состав нефтей дополнительно дает выход еще 25 % углеводородов. Следовательно, по расчетам О. Г. Сорохтина, потенциальная производительность биогенных веществ из океанических осадков может достигать 30 %. Надо учитывать, что над глубоководными желобами, прилегающими к островным дугам или окраинам континентов, толща океанической воды обладает аномально высокой биопродуктивностью. Это объясняется подъемом в этих местах холодных глубинных вод (апвеллинг), обогащенных планктоном, что привлекает сюда и других обитателей океана. Поэтому к зоне поддвига океанические осадочные породы подходят с содержанием органики порой до 30 %, тогда как среднее содержание органического вещества в осадках дна океанов не превышает 0,5 %.

Прежде чем попасть в зону поддвига, океанические осадки еще в условиях первичного залегания на дне проходят длительную стадию диагенеза в течение 100–150 млн лет. Одновременно происходит и некоторое преобразование органического вещества в сторону его «созревания» в микронефть. В зоне поддвига осадки с органическим веществом попадают в условия повышенного температурного режима. По расчетам О. Г. Сорохтина, трение между литосферными плитами приводит к выделению 500–700 кал на каждый грамм породы. За счет рассеивания получаемого при этом тепла океаническая кора в зоне поддвига может разогреваться примерно до 1000 °C. Однако во внешней части, непосредственно перед литосферным выступом, разогрев коры еще сравнительно невелик. Поэтому должен существовать участок, где создается весьма благоприятный температурный режим для термолиза и возгонки биогенных веществ, рассеянных в осадках пододвигаемой плиты. В зоне такого режима, с температурами 100–400 °C, осадки могут пребывать около 1–2 млн лет. Создаются природные условия, сопоставимые с искусственными, лабораторными, когда за короткий отрезок времени, но при сильном температурном воздействии из растительных и животных остатков получается нефть. Другими словами, в зонах поддвига возникают природные перегонные кубы, где в сравнительно короткое геологическое время происходит трансформация рассеянного органического вещества в нефть за счет жесткого температурного режима. В этом случае вовсе не требуется длительного и устойчивого прогибания пластов, чтобы попасть в главную зону нефтеобразования.

Океанические осадки, приходящие в зону поддвига, всегда насыщены поровыми и кристаллизационными водами, концентрация которых достигает нередко 50 %. При разогреве эти воды превращаются в термальные флюиды с температурой до 400 °C и давлением более 200 атм. Флюиды будут стремиться уйти из-под зоны поддвига в область меньшего давления. На своем пути они неизбежно начнут выжимать, растворять и выносить капельно-жидкую нефть. Вот тот мощный фактор выноса микронефти из материнской породы, которого так не хватало «органикам»! Именно перегретый водяной пар с избыточным давлением способен эффективно вытеснять рассеянную микронефть и осуществить процесс ее эмиграции. Интересно, что у разработчиков нефтяных месторождений существует аналогичный способ искусственного вытеснения нефти из продуктивного пласта за счет воздействия на него перегретым водяным паром.