Третью проблему обнаружили геохимики и космохимики. Межпланетные аппараты изучили Луну, Венеру, Марс и Меркурий, стал известен состав атмосфер Венеры и Марса. Применение новых аналитических методов к древнейшим земным горным породам позволило уточнить состав древней атмосферы Земли. Он оказался очень похожим на современные атмосферы Венеры и Марса – 95–98 % углекислого газа (СО2), 2–4 % азота (N2) и малые доли других газов, в основном аргона и сернистого газа. Из такой газовой смеси в аппарате Миллера не получается никакой органики. Опыт Миллера, по современным астрономическим представлениям, имитирует условия протопланетного облака, планет-гигантов и их ледяных спутников, где действительно много метана, аммиака и сероводорода, и может объяснить происхождение аминокислот в метеоритах, но имеет отдаленное отношение к древней Земле. Для получения органических веществ из CO2 необходим восстановитель, и ученые занялись его поисками.
Есть и другие проблемы. Например, водная среда «первичного бульона» плохо подходит для образования белков из аминокислот или ДНК из нуклеотидов. В этих реакциях выделяется вода, и в разбавленном водном растворе химическое равновесие будет сдвинуто в сторону распада длинных полимерных молекул на отдельные «кирпичики». Клетки обходят эту проблему, затрачивая на соединение звеньев химическую энергию в виде АТФ, но для доклеточных стадий эволюции надо искать какие-то другие, более простые способы получения белков и ДНК.
Наконец, важнейший компонент живых клеток, входящий в состав РНК, ДНК и многих других незаменимых молекул, – фосфор – в неживой природе встречается только в виде нерастворимых и химически инертных минералов, таких как апатит. Чтобы получить содержащие фосфор органические молекулы, надо найти где-то фосфор в растворимой и химически активной форме.
Панспермия
В качестве альтернативы абиогенезу (происхождению жизни из неживой материи) ряд крупнейших ученых (Берцелиус, Гельмгольц, Аррениус, Вернадский) предлагали гипотезу панспермии: распространения жизни от одних небесных тел к другим. Аррениус, например, расчетами показал, что споры микроорганизмов размерами меньше 1,5 микрон могут распространяться с планеты на планету и покинуть Солнечную систему за счет давления электромагнитного излучения (в том числе и света). Гипотеза панспермии, однако, не объясняет, как появилась самая первая жизнь, а только отодвигает это событие в более далекое прошлое и в неизвестное место Вселенной. В крайнем варианте панспермии предполагается, что жизнь представляет собой неотъемлемое свойство материи и существует с того же момента, что и Вселенная.
Гипотеза панспермии предсказывает, что жизнь должна быть широко распространена на разных планетах и даже в метеоритах. Однако мы пока не нашли следов жизни на Марсе, хотя искали весьма тщательно. В метеоритах жизни тоже нет. Углистые хондриты богаты органикой, включая аминокислоты, но она вся не обладает хиральной чистотой и, следовательно, не может происходить из живых организмов. Так что гипотеза панспермии многими обоснованно критикуется.
Мир РНК
Первое решение проблемы «неупрощаемой сложности» наметилось в конце 1970-х годов. Тогда были открыты РНК, обладающие каталитической активностью, или рибозимы. До того РНК считалась лишь скромным посредником между ДНК и белками – ведь обычно в клетке генетическая информация копируется с ДНК на РНК, и потом по «оттиску» РНК синтезируются белки. Были, правда, известны вирусы, хранящие генетическую информацию на молекулах РНК, и часть из них способна даже переписывать генетическую информацию с РНК на ДНК. Но с открытием рибозимов стало понятно, что РНК может заменять белки в качестве катализаторов химических реакций.
В этой книге мы много раз встретимся с понятием «катализатор». Катализатором химики называют вещество, которое ускоряет химическую реакцию, но при этом не расходуется. Рассмотрим это на примере разложения перекиси водорода. Перекись может разлагаться на воду и кислород. Пока перекись хранится во флаконе, ее разложение происходит очень медленно, буквально годами. Ускорить эту реакцию можно несколькими способами. Например, раствор перекиси можно прокипятить, и она разложится, потому что все химические реакции идут быстрее при повышении температуры. А можно бросить во флакон ржавый гвоздь, и реакция пойдет при комнатной температуре, что будет заметно по появлению пузырьков кислорода. Ржавчина (смесь оксидов железа) является катализатором разложения перекиси водорода. В ходе реакции уменьшается количество исходного вещества (перекиси) и возрастает количество продуктов (воды и кислорода), катализатор же не расходуется. Один ржавый гвоздь может разложить и флакон, и ведро, и цистерну раствора перекиси.