Хотя многие биоэнергетические технологии хорошо отработаны и полностью коммерциализированы, энергия биомассы страдает от многочисленных проблем с поставками и применением[67]. В настоящее время она может заменить лишь небольшую часть ископаемых видов топлива. Биоэнергетика используется в транспорте: биомассу добавляют в бензин в объеме не более 10 % от топливной смеси, а в дизельное топливо – не более 20 %[68]. В число ограничивающих факторов также входят транспортировка, строительство заводов и высокие эксплуатационные расходы.
Кроме того, производство и использование биотоплива вызывают вопросы о его воздействии на окружающую среду и влиянии на вырубку лесов, цены на продовольствие, воду и другие основные ресурсы. Например, производство этанола и других видов топлива на основе зерна напрямую конкурирует с такими сырьевыми товарами, как кукуруза, сокращая их предложение. Более того, режимы регулирования, стимулирующие производство биотоплива в различных странах, больше напоминают программы субсидирования, чем инновационные инкубаторы, направленные на расширение масштабов технологии. Влияние биотоплива на ряд секторов, таких как продовольствие, сельское хозяйство и окружающая среда, усложняет разработку стратегий и ограничивает развитие биотоплива как отрасли.
Биотопливо способно дать геополитические преимущества и преимущества в области энергетической безопасности тем государствам, что считают себя зависимыми от энергоносителей враждебных стран или государств – потенциальных конкурентов. Даже если производство и экспорт энергоносителей уже приводили к напряженности в отношениях (как в случае торгового спора между США и Бразилией по поводу биоэтанола)[69], биотопливо может напрямую обеспечить энергетическую безопасность и способствовать разнообразию энергетического баланса. Таким образом, биотопливо может служить как практическим решением конкретных проблем, так и политическим выбором, направленным на усиление геополитической мощи.
Стремление к использованию геотермальной энергии[70] демонстрирует проблемы современного технологического развития. Глубокозалегающие геотермальные энергетические мощности все еще находятся на ранних стадиях развития несмотря на то, что впервые они были опробованы в промышленных масштабах более века назад. Строительство и обслуживание геотермальной станции требует больших капитальных инвестиций и характеризуется недостаточной гибкостью в размещении, которое в основном сосредоточено на границах литосферных плит. В настоящее время США являются ведущим производителем геотермальной энергии, хотя существует большой потенциал роста в Восточной Африке, Центральной Америке и Азии.
Природные условия, такие как пар и горячие источники, а также продуктивность пласта влияют на количество скважин, которые необходимо пробурить для станции заданной мощности. Геотермальная энергия более дорогостоящая, чем ископаемое топливо и большинство других возобновляемых источников энергии, поскольку подходящие места обычно находятся далеко от энергетических рынков, что увеличивает затраты на транспортировку энергии.
Геотермальная энергия еще не достигла той стадии технологического развития, которая позволит ей конкурировать с ископаемыми видами топлива или даже с другими возобновляемыми источниками энергии. Такая перспектива представляется маловероятной в краткосрочной или среднесрочной перспективе. Кроме того, развитие геотермальной энергии может привести к тектоническим движениям и нанесению ущерба экологическим системам, что неизбежно будет сопровождаться увеличением прямых расходов и сопутствующих затрат.
В настоящее время проводятся масштабные исследования, которые позволят сделать геотермальное производство коммерчески конкурентоспособным. Например, инициатива FORGE, которая финансируется правительством США[71], сфокусирована на разработке и тестировании технологий для усовершенствованных геотермальных систем (enhanced geothermal systems, ESG). Подобные исследования проводились в Великобритании в таких регионах, как Корнуолл, и до недавнего времени считались не перспективными для подобных разработок[72]. В отличие от глубинных подземных геотермальных систем, поверхностные системы на основе теплообмена являются широко используемой технологией – Исландия почти все свое теплоснабжение получает от поверхностных геотермальных систем.
68
Среди проблем отсутствие промышленной цепочки для выращивания, сбора, переработки и использования биомассы. Кроме того, биоэтанол и биодизель менее эффективны в плане энергосодержания, чем нефтяное топливо.
69
Смесь биоэтанола в старых автомобилях вызывает коррозию внутренних поверхностей двигателя, таких как топливные рампы, и лишь небольшой процент современного автомобильного парка рассчитан на работу на топливе, в котором содержится более 10 % биоэтанола. В США, например, только 3 % автомобилей рассчитаны на использование топливных смесей. Подробнее см. International Energy Agency, Technology Brief T06–June 2010 (Paris: IEA, 2010). Источник: https://www.iea.org/publications/freepublications/publication/etp2010.pdf.
70
В течение многих лет США и Бразилия, два крупнейших в мире производителя этанола, враждовали из-за американских субсидий и тарифов. США ввели тариф на импорт этанола в размере 54 центов за галлон. Этот тариф был введен для защиты американских фермеров, которые не могли производить этанол так же дешево, как фермеры, выращивающие сахарный тростник в Бразилии. В январе 2012 г. правительство США разрешило прекратить 30-летнюю субсидию для американских производителей и отменило высокий тариф на импорт этанола. Этот прорыв побудил США и Бразилию к сотрудничеству в продвижении производства и потребления этанола, к лоббированию новых рынков в Африке и Латинской Америке, а также к единому мировому стандарту. См. Brian Winter, Insight: U.S. and Brazil – At Last, Friends on Ethanol, Reuters, September 14, 2012. Источник: http://www.reuters.com/article/2012/09/14/us-brazil-us-ethanol-idUSBRE88D19520120914 (дата обращения: 03.12.2013).
71
Геотермальная энергия использует тепло, выделяющееся при нагревании воды под землей горячими породами. Пар, который выделяется при бурении, питает электрогенераторы. Геотермальная энергия не страдает от прерывистости, что позволяет ей служить в качестве источника базовой нагрузки, когда будут устранены технологические препятствия для ее применения. Однако правильное сочетание проницаемых горных пород и сокрытой гидротермальной энергии встречается относительно редко. См. Ronald Dipippo, Ideal Thermal Efficiency for Geothermic Binary Plants, Geothermics 36, no. 3 (June 2007); The Future of Geothermal Energy – Impact of Enhanced Geothermal Systems (EGS) on the U.S. in the Twenty-First Century (Cambridge, MA: Massachusetts Institute of Technology, 2006). Источник: http://www1.eere.energy.gov/geothermal/pdfs/future_geo_energy.pdf.