Парижские физики были поставлены перед очень трудной задачей. Имелось много вариантов решения, а надо было выбрать один. Либо махнуть рукой на загадки — мы экспериментаторы, наше, мол, дело установить факты, а почему они такие, пусть разбираются теоретики. Либо, пожав плечами, объявить: нет, это не фотоны, мы натолкнулись на принципиально новое явление. Либо, наконец, соглашаясь, что бериллиевое излучение имеет электромагнитную природу, хорошенько проанализировать, какими оно должно обладать особенностями, чтобы так эффективно воздействовать на водородсодержащие пластинки.
Фредерик и Ирен Жолио-Кюри выбрали последний вариант. Голое описание фактов им претило, они были не фотографами явлений, а мыслителями в науке физике. Но и признать, что найдено что-то, отрицающее все известное, они не захотели. Тут был психологический барьер, они не сумели его перепрыгнуть. В Парижском институте радия все дышало понятием радиоактивности. Радиоактивность здесь была серьезней, чем где-либо, изучена, ее продолжали изучать, с каждой следующей работой углубляя и расширяя. Гамма-излучение, типично радиоактивное свойство, соответствовало профилю института. А если неожиданно обнаружились новые свойства у некоторых гамма-лучей, то где же и обнаруживать их, как не в их общепризнанном мировом центре радиоактивных исследований?
И парижские физики бесстрашно сделали все выводы из открытых ими явлений. Да, они подтверждают, что бериллиевое излучение электромагнитной природы и что жесткость его почти в сто раз превосходит проникающую способность обычных гамма-лучей. Но что здесь невероятного? В космических лучах (а их тогда тоже считали потоками фотонов) энергия излучения еще выше! Бериллиевые лучи как раз и стоят посередине между обыкновенными гамма-лучами и космическими. А что они способны выбывать протоны, летящие с огромными скоростями, то это только свидетельствует, что в Париже найдены новые формы «взаимодействия излучения с материей». Правда, возникает проблема, каким способом электромагнитные волны отдают легким атомам такие большие количества кинетической энергии и импульса. Общепринятые законы механики — принципы сохранения энергии и количества движения — не допускают этого. Ну что же, надо теперь проверить, не нуждаются ли сами основы механики в уточнении!
Все это было так смело, что казалось фантастикой. Странное явление, открытое полтора года назад в Берлине и никого поначалу особенно не заинтересовавшее, внезапно превратилось во взрывной запал, готовый обрушить солидный кусок классической физики.
Жолио не ограничился сообщением в печати, но и написал о совершенном им с женой открытии и гипотезах многим крупным физикам мира, в их числе и советскому академику Абраму Федоровичу Иоффе, создателю и директору Ленинградского Физико-технического института.
3. Фамильное привидение Кавендишской лаборатории
К революциям в физике в первой трети двадцатого века если и не привыкли, то притерпелись. Каждое десятилетие вулканические взрывы сотрясали науку. Сперва это была квантовая теория излучения, потом теория относительности, затем планетарная теория атома и квантовая механика. Но ни один из катаклизмов не уничтожал полностью прежней науки. Законы ее не отменялись, лишь теряли абсолютность, им указывались более скромные границы действия. Не происходит ли нечто подобное и с удивительными явлениями, открытыми в Париже? — Не пришло ли время создавать новую теорию взаимодействия электромагнитных волн и вещества?
Английскому физику Джеймсу Чадвику, ученику Резерфорда, почти фантастическая широта идей супругов Жолио-Кюри показалась сомнительной. Он предугадывал другое объяснение. Он вдруг с волнением почувствовал, что настал час возобновить поиски одного призрака, за которым он безрезультатно гонялся уже одиннадцать лет. Привидение, коварно не дававшееся в Кембридже, внезапно объявилось в Париже. Теперь оно не уйдет, теперь его удастся вывести на ясный свет!
В мире в январе 1932 года, вероятно, не существовало другого физика, который мог бы с таким правом, как Чадвик, еще не поставив собственных опытов, настаивать на совершенно ином истолковании бериллиевого излучения. Дело в том, что этот уже немолодой ученый был одержим идеей нейтрона.