Сложнее оказалось решить проблему источника нейтронов. Нейтроны в лабораториях получали из бериллия: порошок бериллия бомбардировался альфа-частицами, в ответ из бериллия исторгался поток нейтронов, всё было до удивления просто. Порошкообразный бериллий Ферми достал легко. Но где, в самом деле, добыть альфа-пушку? В Париже имелся мощнейший в мире полониевый источник альфа-частиц. В Риме полония ни один химик и в глаза не видал.
Ферми направился к профессору Чезаре Трабакки, заведовавшему лабораторией министерства здравоохранения.
Лаборатория эта помещалась в том же здании физического факультета университета, а профессор Трабакки был человек с добрым сердцем и владелец богатых складов. На стеллажах у него хранились сокровища, давно уже приковывавшие к себе завистливые взгляды бедных университетских физиков: химикалии и приборы, реостаты и катодные лампы, инструменты и материалы. К нему бегали клянчить дефицитное имущество — амперметры и отвёртки, проволоку и напильники, — и он никому пока не отказывал. Синьору Трабакки нравилось, что он всем так нужен, он с охотой угождал молодым учёным, и те между собой благодарно именовали его «промыслом божьим».
И каждому в университете было хорошо известно, что в большом стальном сейфе, обшитом свинцовыми плитами, у Трабакки хранится главное его сокровище — один грамм радия стоимостью в 34 000 долларов. И этот радий испускал как раз те альфа-частицы, в которых нуждался Ферми для создания источника нейтронов.
Но даже доброжелательный Трабакки не мог ссудить физиков такой драгоценностью, как щепотка радия. Он был хранителем радия, но отнюдь не его хозяином. Чтоб выдать малую толику дорогого элемента, пришлось бы писать министру с полной уверенностью если и не в прямом отказе, то в многомесячной проволочке, а Ферми время подготовки к первому опыту исчислял днями, а не месяцами.
Ферми, однако, вовсе и не настаивал на радии. Радий в процессе своего медленного распада непрерывно исторгал газ радон, постепенно накапливавшийся в сейфе. А радон тоже испускал альфа-частицы, и даже интенсивней, чем сам радий. И радон не находился на материальном подотчёте Трабакки: профессор мог его и ссужать, и выпускать в атмосферу без последующих бухгалтерских оправданий.
Ферми договорился с Трабакки, что в железном сейфе просверлят отверстие, приварят к отверстию трубку и будут периодически отсасывать по трубке неподотчётный радон, чтобы заполнить им ампулы с порошкообразным бериллием.
Проблема нейтронной пушки, таким образом, тоже была решена.
Оставалось последнее — бомбардируемые мишени, набор химических элементов, которые из стабильных намеревались превратить в радиоактивные.
И на этом участке вскоре обозначился успех...
Добычей химических элементов занялся Эмилио Сегре, самый, вероятно, талантливый из помощников Ферми, будущий лауреат Нобелевской премии. Ферми набросал на клочке бумаги список препаратов, содержащих нужные химические элементы, и вручил список Сегре. Эмилио Сегре прихватил огромную сумку и направился в магазин Трокколи, крупнейшего в Риме торговца химикатами. Сегре твёрдо знал, что того, чего нет у Трокколи, вообще не найдёшь в Риме.
Синьор Трокколи бросил пренебрежительный взгляд на смятую бумажку, исчёрканную кривыми строчками, и обвёл рукой полки магазина:
— Смотрите и берите. И если вы чего-либо здесь не найдёте, так я просто не знаю, что вам нужно от химии.
И Сегре стал усердно наполнять свою сумку всем, что ему подавал Трокколи. А когда Сегре, сверившись со списком, назвал соли цезия и рубидия, Трокколи полез наверх, снял две запылившиеся банки, обдул их и растроганно сказал:
— Вы можете взять их бесплатно, синьор учёный. Они лежат у меня на этом месте ровно пятнадцать лет — и хоть бы раз их кто-нибудь спросил! Я просто обязан отблагодарить вас за то, что они вам понадобились.
Гордый Сегре возвращался в университет, изгибаясь под тяжестью битком набитой сумки. За один выход он добыл почти все элементы таблицы Менделеева, которые выпускала промышленность.
Правда, в сумке не было мирного элемента технеция, который самому Сегре предстояло открыть через три года, а также грозного плутония, в открытии которого он будет участвовать через семь лет. Но в тот солнечный январский день «василиск» Эмилио Сегре и не догадывался о существовании таких элементов и ещё менее мог предугадать свою будущую огромную роль в их открытии. Он шёл изнемогая, но весело напевал — труд был радостен, тяжесть приятна.
К исследованиям приступили в тот же день.
И сами эксперименты, которыми занялись римские теоретики, и методика их опытов поражали: вряд ли ещё существовала в мире лаборатория, где решились бы так внешне «несолидно» провести работы, вызвавшие подлинную революцию в физике.
Начать с того, что источник нейтронов, то есть ампулка с порошкообразным бериллием и газом радоном, находился в одном конце длинного университетского коридора, а счётчик Гейгера — в другом. Источник не мог помещаться поблизости от счётчика, так как нейтроны ионизировали воздух и это могло повлиять на показания прибора. А поскольку активность облучённых элементов временами была весьма недолгой, то экспериментаторам приходилось сломя голову мчаться с пробой в руках из конца в конец коридора и, запыхавшись, как можно скорее подносить её к счётчику, вслух высчитывая щелчки в приборе. О какой-либо медлительной вдумчивости, неторопливых измерениях в такой спешке не приходилось и мечтать.
Впрочем, физики в Риме и не стремились к медлительности в измерениях, к неспешной вдумчивости, всё это было не в их натуре.
Не стремились они также и к общепринятой обстоятельности, к педантичной перепроверке каждого измерения, к скрупулёзным уточнением запятых и сотых. Они врубались в чащу неизвестного топорами, а не манипулировали ланцетами. Они только что стали экспериментаторами, до лабораторного изящного мастерства, которое так отличало всё научное творчество супругов Жолио-Кюри, энергичным римлянам было недосягаемо далеко. Они ставили природе не хитрые, не тонко продуманные вопросы,— нет, грубо и решительно допрашивали её о предельно простых явлениях, и природа отвечала с той же простотой и решительностью.
И ответы, полученные группой Ферми, буквально ошеломляли.
Правда, первые дни не принесли успеха. Ферми начал с самых лёгких элементов. Но водород, литий, бериллий и бор, углерод и азот стойко выдерживали нейтронную бомбардировку, ни один не собирался распадаться после атаки на них. Они были так великолепно забронированы, что казались заколдованными. И начинающие экспериментаторы стали понемногу впадать в уныние. Не ошиблись ли они с нейтронами? Не переоценили ли могучую силу новой частицы?
Но когда физики, отступив от непокорённых азота и кислорода, занялись следующим элементом — фтором, овладевшее было ими разочарование сменилось восторгом. Даже кратковременная нейтронная бомбёжка делала фтор радиоактивным. Правда, активность фтора за десять секунд уменьшалась наполовину, так что приходилось устраивать спринтерские кроссы по коридору, но импульсы регистрировались отчётливо, облучённый фтор интенсивно ионизировал воздух.
Алюминий показал ещё более высокую активность — 30—40 импульсов в минуту сразу после облучения. И период полураспада равнялся уже не секундам, а 12 минутам, с алюминием можно было и не побивать рекордов в беге. И алюминий к тому же после нейтронной бомбардировки испускал не экзотические позитроны, обнаруженные парижанами,— нет, в Риме он выбрасывал тривиальные электроны. Это был хорошо известный науке радиоактивный бета-распад, но только созданный искусственно.
В восторге от удачи, Ферми отправляет в печать сообщение о том, что нейтронная бомбардировка элементов порождает искусственную радиоактивность. Правда, искусственно активированных элементов пока два — фтор и алюминий, но разве дело в количестве их? Важен принцип: нейтроны порождают радиоактивность даже у лёгких элементов.