Выбрать главу

Исследование не сопровождается радиоактивным облучением пациента и персонала. Об отрицательном (с биологической точки зрения) воздействии магнитных полей с индукцией, которая применяется в современных томографах, достоверно пока ничего не известно. Определенные ограничения использования МРТ необходимо учитывать, выбирая рациональный алгоритм лучевого обследования больного. К ним относится эффект «затягивания» в магнит металлических предметов, что может вызвать сдвиг металлических имплантатов в теле пациента. В качестве примера можно привести металлические клипсы на сосудах, сдвиг которых может повлечь кровотечение, металлические конструкции в костях, позвоночнике, инородные тела в глазном яблоке и др. Работа искусственного водителя ритма сердца при МРТ также может быть нарушена, поэтому обследование таких больных не допускается.

1.3.4. Ультразвуковая диагностика

Ультразвуковые волны – это упругие колебания среды с частотой, лежащей выше диапазона слышимых человеком звуков. В современной УЗД обычно применяются волны с частотой от 2,5 до 15 МГц.

У ультразвуковых приборов имеется одна отличительная особенность. УЗ-датчик является одновременно и генератором, и приемником высокочастотных колебаний. Основа датчика – пьезоэлектрические кристаллы. Они обладают двумя свойствами: подача электрических потенциалов на кристалл приводит к его механической деформации с той же частотой, а механическое сжатие его от отраженных волн генерирует электрические импульсы. В зависимости от цели исследования, используют различные типы датчиков, которые различаются по частоте формируемого УЗ-луча, своей форме и предназначению (трансабдоминальные, внутриполостные, интраоперационные, внутрисосудистые).

Все методики УЗИ подразделяют на три группы:

– одномерное исследование (эхография в А-режиме и М-режиме);

– двухмерное исследование (ультразвуковое сканирование – В-режим);

– допплерография.

Каждая из вышеперечисленных методик имеет свои варианты и применяется в зависимости от конкретной клинической ситуации. Так, например, М-режим особенно популярен в кардиологии. Ультразвуковое сканирование (В-режим) широко используется при исследовании паренхиматозных органов. Без допплерографии, позволяющей определить скорость и направление тока жидкости, невозможно детальное исследование камер сердца, крупных и периферических сосудов.

УЗИ практически не имеет противопоказаний, так как считается безвредным для больного.

За последнее десятилетие данный метод претерпел небывалый прогресс, и поэтому целесообразно отдельно выделить новые перспективные направления развития этого раздела лучевой диагностики.

Цифровая УЗД предполагает использование цифрового преобразователя изображения, что обеспечивает повышение разрешающей способности аппаратов.

Трехмерная и объемная реконструкции изображений повышают диагностическую информативность за счет лучшей пространственно-анатомической визуализации.

Использование контрастных препаратов позволяет повысить эхогенность исследуемых структур и органов и достичь лучшей их визуализации. К таким препаратам относят «Эховист» (микропузырьки газа, введенные в глюкозу) и «Эхоген» (жидкость, из которой уже после введения ее в кровь выделяются микропузырьки газа).

Цветное допплеровское картирование, при котором неподвижные объекты (например, паренхиматозные органы) отображаются оттенками серой шкалы, а сосуды – в цветной шкале. При этом оттенок цвета соответствует скорости и направлению кровотока.

Интрасосудистые УЗИ не только позволяют оценить состояние сосудистой стенки, но и при необходимости выполнить лечебное воздействие (например, раздробить атеросклеротическую бляшку).

Несколько обособленно в УЗД стоит метод эхокардиографии (ЭхоКГ). Это наиболее широко применяемый метод неинвазивной диагностики заболеваний сердца, основанный на регистрации отраженного УЗ-луча от движущихся анатомических структур и реконструкции изображения в реальном масштабе времени. Различают одномерную ЭхоКГ (М-режим), двухмерную ЭхоКГ (В-режим), чреспищеводное исследование (ЧП-ЭхоКГ), допплеровскую ЭхоКГ с применением цветного картирования. Алгоритм применения этих технологий эхокардиографии позволяет получить достаточно полную информацию об анатомических структурах и о функции сердца. Становится возможным изучить стенки желудочков и предсердий в различных сечениях, неинвазивно оценить наличие зон нарушений сократимости, обнаружить клапанную регургитацию, изучить скорости потока крови с расчетом сердечного выброса (СВ), площади клапанного отверстия, а также целый ряд других параметров, имеющих важное значение, особенно в изучении пороков сердца.

1.3.5. Радионуклидная диагностика

Все методики радионуклидной диагностики основаны на использовании так называемых радиофармацевтических препаратов (РФП). Они представляют собой некое фармакологическое соединение, имеющее свою «судьбу», фармакокинетику в организме. Причем каждая молекула этого фармсоединения помечена гамма-излучающим радионуклидом. Однако РФП – не всегда химическое вещество. Это может быть и клетка, например эритроцит, меченный гамма-излучателем.

Существует множество радиофармпрепаратов. Отсюда и многообразие методических подходов в радионуклидной диагностике, когда применение определенного РФП диктует и конкретную методику исследования. Разработка новых и совершенствование используемых РФП – основное направление развития современной радионуклидной диагностики.

Если рассматривать классификацию методик радионуклидного исследования с точки зрения технического обеспечения, то можно выделить три группы методик.

I. Радиометрия – измерение радиоактивности всего тела или его части после введения в организм соответствующего РФП. Информация представляется на дисплее электронного блока в виде цифр и сравнивается с условной нормой. Обычно таким образом исследуются медленно протекающие физиологические и патофизиологические процессы в организме (например, йод-поглотительная функция щитовидной железы).

II. Радиография (гамма-хронография) применяется для изучения быстропротекающих процессов. Например, прохождение крови с введенным РФП по камерам сердца (радиокардиография), выделительная функция почек (радиоренография) и т. д. Информация представляется в виде кривых, обозначающихся как кривые «активность – время».

III. Гамма-томография – методика, предназначенная для получения изображения органов и систем организма. Представлена четырьмя основными вариантами:

1. Сканирование. Сканер позволяет, построчно пройдя над исследуемой областью, произвести радиометрию в каждой точке и нанести информацию на бумагу в виде штрихов различного цвета и частоты. Получается статическое изображение органа.

2. Сцинтиграфия. Быстродействующая гамма-камера позволяет проследить в динамике практически все процессы прохождения и накопления РФП в организме. Гамма-камера может получать информацию очень быстро (с частотой до 3 кадров в 1 с), поэтому становится возможным динамическое наблюдение. Например, исследование сосудов (ангиосцинтиграфия).

3. Однофотонная эмиссионная компьютерная томография. Вращение блока детекторов вокруг объекта позволяет получить срезы исследуемого органа, что существенно повышает разрешающую способность гамма-томографии.

4. Позитронная эмиссионная томография. Самый молодой способ радионуклидной диагностики, основанный на применении РФП, меченных позитрон-излучающими радионуклидами. При их введении в организм происходит взаимодействие позитронов с ближайшими электронами (аннигиляция), в результате чего «рождаются» два гамма-кванта, разлетающиеся противоположно под углом 180°. Это излучение регистрируется томографами по принципу «совпадения» с очень точными топическими координатами.