Место, где его ищут, — теория струн. С самого начала автор книги решительно намеревался избежать серьезного экскурса в эту теорию. Чтобы понимать суть теории струн, надо хотя бы иметь представление о математике, которая лежит в ее основе. Ознакомление с этой математикой находится за пределами житейских возможностей автора данной книги. А без понимания основ лучше не писать вообще. Пусть теория струн остается героем повествования, который маячит за кулисами, не выходя на сцену, но неявно влияет на ход событий. Об этой теории должны быть написаны другие книги другими людьми.
Однако сейчас, чтобы разобраться с антропным принципом, совсем обойти молчанием теорию струн невозможно. В таких случаях полезно прибегать к цитированию людей, которые разбираются в предмете лучше тебя. Одним из таких является научный редактор данной книги. В качестве подходящей цитаты можно использовать интервью, взятое автором у Валерия Рубакова в связи с первым присуждением премии Мильнера, среди лауреатов которой были классики теории струн. Оно опубликовано в «Троицком варианте» в августе 2012 года и цитируется в слегка адаптированном виде.
Борис Штерн: Что касается струн, то там уже никаким экспериментом ничего не докажешь, но они тоже, видимо, имеют огромное мировоззренческое значение.
Валерий Рубаков: Не только. Еще огромное значение для математики. Суперструны наплодили большое количество интересных математических объектов, до которых сами математики не додумались. Да и просто для развития мозгов имеют немалое значение.
Суперструны вначале вводятся аналогично частицам в релятивистской квантовой механике — уравнение вроде Клейна — Гордона для свободных частиц, только объекты имеют вид струн — открытых или замкнутых, где есть квантовые уровни разных мод колебаний. Эти возбуждения можно ассоциировать с частицами. Далее сразу применяется теория возмущений, есть аналог диаграмм Фейнмана, только вместо линий там трубы, которые могут сливаться подобно штанинам брюк, ну и дополнительные интегралы надо брать.
Б. Ш.: Когда появились струны?
В. Р.: В первом варианте еще в 1960-х — начале 1970-х в попытке описать взаимодействия адронов. Поначалу теория давала неприятный артефакт — тахионы, двигающиеся быстрее света и нарушающие причинность. Потом появились суперструны, избавившие теорию от тахионов. Потом самосогласованные теории суперструн без всяких внутренних противоречий вообще. Причем они возможны только в пространстве большего числа измерений, минимум 10. Я очень хорошо помню, как в Москву приезжал Виттен, кажется в 1985 году. Выступая на семинаре в ФИАН, он заявил типа: друзья, всё, теория сформулирована! Есть две и только две самосогласованные модели — они должны описать всё. Остались технические трудности, но, осилив их, мы выжмем всё, мы сможем из первых принципов получить такие вещи, как заряд и массу электрона.
Б. Ш.: Получается, не осилили. Где основная засада?
В. Р.: С тех пор выяснилось, что всего самосогласованных моделей пять, сделан действительно огромный вклад в математику, а настоящего, окончательного аппарата всё еще нет.
Основная засада, полная сарсынь, как выражаются твои европиане, появилась в неожиданном месте: оказалось, что в теории суперструн есть примерно 10500 разных вакуумов, причем все они практически стабильны. И мы не знаем, в котором из этих вакуумов живем…
47.1. Эдвард Виттен. Институт перспективных исследований (Принстон, США)
Б. Ш.: Видимо, такое чудовищное число может взяться только из комбинаторики. Что именно комбинируется?
В. Р.: Конечно. Есть гигантское число способов, которыми можно редуцировать изначальное 10- или 11-мерное пространство в наш четырехмерный мир. Можно свернуть лишние измерения так, можно сяк, вакуумная топология одного поля может быть такой, другого — сякой. Ну и так далее. Понятно, что исследовать 10500 возможностей нереально. А то, как будет работать теория суперструн, что она будет предсказывать, зависит от конкретного вакуума, в котором мы находимся. Определить это невозможно ни теоретически, ни экспериментально. Люди пытались действовать следующим образом: возьмем такой-то подкласс суперструнных вакуумов, где их всего миллион — с этим числом уже можно работать. Посмотрим, нет ли в этом миллионе вариантов, где появляется нечто похожее на стандартную модель. Потребуем, чтобы при данном вакууме был легкий электрон, — 99% вариантов отсеивается. Потребуем, чтобы там были три поколения кварков, — остается всего 200 из миллиона. Потребуем еще, чтобы заряды были правильными, — не выживает ни один вариант. И что делать дальше с оставшимися 10500 за минусом миллиона?