Наша эпоха, когда существуют планетные системы и возможна жизнь, в данном масштабе не больше ширины штрихов линии, обозначающей современную Вселенную на рис. 27.1 (справа). А между стадией инфляции и электрослабым фазовым переходом лежит самая долгая в логарифмическом плане эпоха, про которую мы мало что можем сказать. Есть подозрение, что в эту эпоху не происходило ничего интересного: по своей температуре эпоха соответствует так называемой Великой энергетической пустыне — области от сотен гигаэлектронвольт до 1016 ГэВ. Вероятно, где-то там сформировалась барионная асимметрия, возможно, жили разнообразные супер-симметричные партнеры нынешних частиц — фотино, скварки… Конечно, никто не даст голову на отсечение, что и посредине пустыни не происходило что-то интересное, просто это никак не просматривается из физики частиц в ее современном состоянии.
Могли ли на этом логарифмически длиннейшем отрезке истории случиться «искусства, знанья, войны, троны и память сорока веков»? Для этого прежде всего нужны частицы с массой, на много порядков превосходящей температуру Вселенной. Сейчас температура 3·10-4 эВ — масса электрона на 9 порядков больше. В принципе, такие частицы могли остаться от эпохи окончания инфляции — с массой чуть меньшей, чем масштаб великого объединения, скажем, 10-5 ГэВ. Допустим, есть какой-то закон сохранения, заставляющий эти частицы жить долго, например 1 не — до конца эпохи энергетической пустыни. Вполне возможно, что они могли бы образовывать что-то вроде атомов и молекул.
Однако, первая проблема заключается в том, что этих частиц оказалось бы маловато внутри горизонта Вселенной того времени. К концу эпохи энергетической пустыни таких частиц внутри горизонта оказалось бы где-то 1050 — на 30 порядков меньше, чем барионов внутри нынешнего горизонта. Это число примерно того же порядка, что число барионов в Земле. Явно мало, учитывая, что пространство внутри горизонта быстро расширяется.
Следующая проблема заключается в том, что эти частицы не успели бы сконденсироваться в космические тела. И, наконец, достаточно ли 1 не для эволюции структур в их естественном масштабе времени? Вопрос о том, что такое естественный масштаб времени, не так прост, но, вероятно, для очень грубой оценки можно использовать единицы атомного времени, определяемого с помощью принципа неопределенности как t ~ ћ/E, где Е — энергия связи электрона в атоме. Для внешних оболочек в атоме примем Е = 10 эВ, тогда характерное атомное время будет 1016 с. За последние 3 млрд лет (10-7 с) прошло 1033 атомных времен. Этого хватило на всё.
Энергия связи электрона в атоме по меньшей мере на пять порядков меньше массы электрона. Наши гипотетические частицы эпохи конца Великой энергетической пустыни имеют массу не более 1015 ГэВ, и если следовать аналогии, то энергия связи в гипотетических атомах должна быть не больше 1010 ГэВ. Соответствующее атомное время — 10-34 с. В таком случае за интересующую нас эпоху в 1 не прошло 1025 атомных времен, что соответствовало бы 30 годам в пересчете на наши атомы. Явно мало.
Таким образом, за длинную, богатую метаморфозами логарифмическую историю Вселенной только наш короткий интервал в пол-порядка богат на сложные эволюционирующие структуры. А гораздо больший интервал в 14 порядков и впрямь остается пустынным.
28. Судьба сгустка X
Итак, инфляция приготовила затравочные возмущения плотности энергии. Они растягивались в пространстве, покрывая огромный диапазон размеров и имели примерно одинаковые амплитуды на всех масштабах. Это изложено в общих чертах в главе 24, а сейчас попробуем проследить более подробно судьбу одной положительной флуктуации плотности, которая при окончании инфляции имела размер около микрона. Назовем эту флуктуацию «сгусток X», хотя слово «сгусток» на тот момент является некоторым преувеличением — его контраст, т.е. относительное превышение плотности всего около 510-5 (взяли среднеквадратичное отклонение).
При тех параметрах инфляции, которые мы приняли в главе 24, сгусток X родился размером 10-27 см и раздулся на 24 порядка за 70 удвоений масштаба. По времени это заняло чуть меньше 10-35 с, отделяющих конец инфляции от момента рождения сгустка X. Если следовать нашим допущениям, то при рождении сгусток X имел массу примерно 10 г, а по выходу из инфляции — 1071 г при почти микроскопическом размере, что на много порядков больше массы наблюдаемой части современной Вселенной. Избыток его массы над окружением тоже превосходил все мыслимые величины. Но этот микронный сгусток не мог сколлапсировать в черную дыру: он расширялся со скоростью, на много порядков большей скорости света, что не противоречит специальной теории относительности, поскольку сгусток X был растянут на огромное число причинно не связанных областей. По этой же причине его контраст оказался «замороженным»: одни части сгустка X ничего не знали о других частях, не чувствовали их тяготения — он как будто оказался разбит на огромное множество независимых вселенных.