Выбрать главу

Если посмотреть на список простых чисел повнимательнее, то станет заметно, что они скудеют по мере продвижения вперед по списку. Между 1 и 100 имеется 25 простых; между 401 и 500 их 17; а между 901 и 100 — всего 14. Как видно, число простых в каждом блоке из сотни чисел убывает. Если бы мы продлили список, включив в него все простые числа до миллиона, то обнаружилось бы, что в последнем блоке из сотни чисел (т.е. среди чисел от 999 901 до 1000 000) всего лишь восемь простых. А если продлить до триллиона, то в последнем блоке из сотни чисел нашлись бы только четыре простых (конкретно, они таковы: 999 999 999 937, 999 999 999 959, 999 999 999 961 и 999 999 999 989).

II.

Возникает естественный вопрос: истощатся ли рано или поздно простые числа до конца? Если продолжить список до триллионов триллионов или до триллионов триллионов триллионов триллионов, то дойдем ли мы в конце концов до точки, за которой простых чисел больше нет, так что последнее простое, встреченное нами по пути, окажется наибольшим простым числом?

Ответ на это около 300 года до P.X. дал Эвклид. Нет, простые числа не истончаются до конца. Всегда найдутся еще. Нет наибольшего простого числа. Сколь большое простое число вы бы ни взяли, всегда найдется еще большее. Простые числа продолжаются без конца. Доказательство: пусть число N — простое. Образуем такое число: (1×2×3×…×N) + 1. Оно не делится нацело ни на одно из чисел от 1 до N — в остатке всегда будет единица. Значит, или оно не имеет собственных делителей (и, следовательно, является простым числом, превосходящим N), или же наименьший из его простых делителей — некоторое число, превосходящее само N. Этим результат и доказан, поскольку наименьший собственный делитель любого числа с необходимостью является простым, ведь иначе в нем в свою очередь нашелся бы меньший делитель. Скажем, если N есть 5, то 1×2×3×4×5 + 1 есть 121, и наименьший простой делитель этого числа равен 11. С какого бы простого числа вы ни начали, вы получите большее простое. (Другое доказательство бесконечности числа простых чисел я дам в главе 7.iv, после того как покажу вам Золотой Ключ.)

При том что этот вопрос удалось урегулировать на столь раннем этапе истории математики, следующей по очереди вещью, естественным образом занимавшей головы математиков, была такая проблема: можно ли найти правило, закон для описания того, как именно истончаются простые числа? В пределах сотни имеется 25 простых чисел. Если бы простые числа были распределены строго равномерно, то, разумеется, в пределах тысячи их было бы в 10 раз больше, т.е. 250. Но из-за истончения там в действительности только 168 простых. Почему 168? Почему, скажем, не 158, или 178, или еще сколько-нибудь? Существует ли правило, формула, говорящая, сколько имеется простых чисел, меньших данного числа?

Вот мы и пришли к тому вопросу, с которого, как и Бернхард Риман, мы начали: сколько имеется простых чисел, меньших заданного числа?

III.

А что мы можем выяснить, действуя «от готового»? Я на самом деле знаю ответы на последний вопрос для довольно внушительных чисел. Некоторые из них показаны в таблице 3.1.

N Сколько простых, меньших, чем N?
1 000 168
1 000 000 78 498
1 000 000 000 50 847 534
1 000 000 000 000 37 607 912 018
1 000 000 000 000 000 29 844 570 422 669
1 000 000 000 000 000 000 24 739 954 287 740 860

Таблица 3.1.

Здорово, конечно, но на самом деле не слишком информативно. Да, простые числа истончаются. Если бы они продолжали появляться в том же темпе, что и в первой тысяче, где их 168, то в последней графе их было бы что-то около 168 000 000 000 000 000. Но там в действительности лишь одна седьмая этого значения.

Сейчас я покажу фокус, который прольет немного света на эту туманную картину. Но сначала два слова о функциях.

IV.

Двухколоночная табличка вроде таблицы 3.1 иллюстрирует понятие функции. «Функция» — одна из важнейших концепций во всей математике, вторая или третья по значимости, на мой взгляд, после «числа» и, возможно, «множества». Основная идея функции состоит в том, что некоторое число (из правой колонки) зависит от другого числа (из левой колонки) в соответствии с некоторым заданным законом или процедурой. Конкретно для таблицы 3.1 процедура такова: «Посчитать, сколько имеется простых чисел в пределах, определяемых числом в левой колонке».