Руководствуясь той же грубой логикой, можно оценить величину N-го простого числа. Рассмотрим отрезок числового ряда от 1 до K для какого-нибудь большого числа K. Если в этом интервале простых чисел, то в среднем следует ожидать, что первым простым, которое мы встретим, будет число К:C, вторым — число 2K:C, третьим — 3K:C и т.д. N-е простое будет находиться где-то около числа NK:C, а C-е (другими словами, последнее простое в этом интервале) окажется около числа K:C, что, понятно, равно просто K. И вот, если верна ТРПЧ, то количество простых чисел C есть К/ln K, а потому N-е простое в действительности встретится вблизи числа NK:(К/ln K), или, другими словами, вблизи числа Nln K. Поскольку большинство чисел в этом интервале сравнимы по величине с числом K, здесь можно поменять местами N и K, а потому N-е простое есть по величине ~ N/ln N. Я знаю, что такое рассуждение выглядит небольшим жульничеством, но в действительности оно дает неплохую оценку, которая к тому же становится все лучше и лучше «по принципу волны». Эта оценка предсказывает, например, что триллионное простое число равно 27 631 021 115 929, а на самом деле триллионное простое число есть 30 019 171 804 121, так что ошибка составляет 8 процентов. Выраженные в процентах ошибки для тысячного, миллионного и миллиардного простого числа равны соответственно 13, 10 и 9.
Вероятность того, что число N простое, ~ 1/ln N.
N-е простое число ~ Nln N.
Эти утверждения не просто следуют из ТРПЧ; сама ТРПЧ также следует из них. Если математически доказать справедливость любого из них, то в качестве следствия получится ТРПЧ. Каждый из этих результатов равносилен ТРПЧ, и его можно считать просто альтернативной формулировкой этой теоремы. В главе 7.viii мы познакомимся с другим, более важным способом переформулировать ТРПЧ.
Глава 4. На плечах гигантов
Первым человеком, которому открылась истина, содержащаяся в Теореме о распределении простых чисел (ТРПЧ), был Карл Фридрих Гаусс, живший с 1777 по 1855 год. Гаусс, как уже говорилось в главе 2.v, вполне может претендовать на звание величайшего математика из всех вообще когда-либо живших. В течение своей жизни он был известен как Princeps Mathematicorum — Князь Математиков, а после его смерти король Ганновера Георг V распорядился о выпуске памятной медали в его честь, с указанием этого титула.[21]
Гаусс был чрезвычайно невысокого происхождения. Его дед был безземельным крестьянином, а отец — перебивавшимся с места на место садовником и каменщиком. Гаусс ходил в самую скромную местную школу. Знаменитый эпизод, который, как рассказывают, произошел в этой школе, имеет гораздо больше шансов оказаться правдой, чем большинство обычных историй такого рода. Однажды учитель, желая устроить себе получасовой перерыв, дал классу задание сложить друг с другом первые 100 чисел. Почти мгновенно Гаусс бросил грифельную доску на учительский стол со словами «Ligget se!», что на местном крестьянском диалекте того времени означало: «Вот он [ответ]!» Карл мысленно расположил числа горизонтально в порядке (1, 2, 3, …, 100), затем в обратном порядке (100, 99, 98, …, 1), а после этого сложил два списка вертикально: (101, 101, 101, …, 101). Получилось 100 раз число 101, а поскольку числа были выписаны дважды, ответ равен половине этой суммы, т.е. 50 умножить на 101, что равно 5050. Совсем просто, когда вам об этом рассказали, но все же это не тот способ, который сам собой придет в голову обычному десятилетнему мальчику; да и обычному взрослому лет в тридцать тоже, если уж на то пошло.
21
Георг был последним королем Ганновера. После сделанного в 1866 г. неудачного выбора, на чьей стороне воевать в австро-прусской войне, это королевство было в том же году поглощено Пруссией. Медаль, по-видимому, была отлита лишь к столетию Гаусса в 1877 г.