На самом деле, есть много указаний на правильность первого постулата, по крайней мере в пределах видимой в телескопы Вселенной.
Возьмем Солнце.
Мы знаем, какие частицы, какие частоты излучения, какие виды энергии исходят от него. Мы обнаруживаем их, когда они выстреливают с его поверхности и приземляются на Земле. А как насчет прочих далеких звезд? Они светят благодаря той же термоядерной реакции или реакции совершенно разные? Они похожи на брошенное в костер бревно или состоят из плазмы, как Солнце? В нашем распоряжении не так много инструментов для исследования таких вопросов. А на самом деле только один: полученный от этих звезд свет. В нем зашифровано много секретов, и один из них, который нам удалось расшифровать, гласит, что законы физики одинаковы везде. И поскольку свет является ключом к пониманию космоса, давайте посмотрим, что он из себя представляет.
Свет, также известный как электромагнитное излучение, можно рассматривать одновременно и как частицу (фотон), и как волну. Как вы увидите позже, оба определения не только работают, но и должны учитываться, если мы хотим понять наш мир. На данный момент, однако, достаточно рассмотреть его просто как волну.
Для описания океанских волн необходимо определить две вещи: их высоту и расстояние между двумя следующими друг за другом гребнями. Эта высота имеет очевидное значение: естественно, вы не будете реагировать одинаково, скажем, на приближающиеся волны высотой 50 метров и 2 миллиметра. Такая же мысль и по поводу света, а высота его волны связана с тем, что мы называем интенсивностью излучения.
Точно так же существует разница между морскими волнами, находящимися за сотни метров и очень близкими друг к другу. Это расстояние, соответственно, называется длиной волны. Чем больше длина волны, тем меньше возникающих в течение заданного периода времени волн, то есть цифра, связанная с частотой волны. Для того чтобы на уровне интуиции почувствовать, что чем короче длина волны (или чем выше частота), тем выше задействованная энергия, представьте себя перед плотиной. Если пятиметровая волна один раз в месяц будет биться об нее, это не станет поводом для беспокойства, в отличие от такой же волны, ударяющей по ней десять раз в секунду. То же самое происходит с излучением: чем короче длина волны (или чем выше частота), тем больше переносимая его волной энергия.
Теперь утверждение вопреки тому, что думали наши предки: наши глаза – приемники, а не источники света. И они не созданы для обнаружения всех существующих видов излучения ни по интенсивности, ни по длине волн. Слишком мощный источник излучения легко и просто разрушает сетчатку глаз, ослепляя вас в считаные секунды. Это то, что произойдет, если вы посмотрите на Солнце, лазер или другой чересчур интенсивный источник света. Мы можем видеть только не слишком интенсивные и не слишком слабые световые волны.
Ограничение длин волн для нашего зрения трудноуловимо. На протяжении тысячелетий, в течение которых наши предки (а в нас сохранились гены тех, кто существовал задолго до того, как получил человеческий облик) эволюционировали, их органы обнаружения света адаптировались к тому, чтобы видеть то, что больше всего необходимо для выживания. Чтобы сорвать фрукт или узнать о присутствии саблезубого тигра, гораздо полезнее распознавать зеленый, красный или желтый, чем рентгеновские лучи, испускаемые падающими звездами вблизи далеких черных дыр. Короче говоря, наши глаза адаптированы к свету наиболее необходимым в повседневной жизни образом. Если бы мы могли обнаруживать только рентгеновские лучи, мы бы давно вымерли.
В итоге то, что в состоянии увидеть наши глаза сегодня, весьма ограничено по сравнению со всеми существующими видами излучения. Но Вселенную это не волнует. Она наполнена всеми ими. И снова мы метко назвали видимым светом видимый нам спектр и присвоили его отдельным частям собственные названия – цвета. Различие между двумя цветами иногда может показаться весьма условным, но существует весьма точное математическое определение, основанное на расстоянии, на длине волн.