Выбрать главу

Среди всех элементов в живых системах выделяют макроэлементы, которые, как атланты, держат на плечах весь груз функционирования биологических молекул (это углерод – С, водород – H, азот – N, кислород – O) и микроэлементы, которых значительно меньше, если сравнивать в «штуках», но роль их так же важна (это фосфор – F, кальций – Ca, сера – S, йод – I, селен – Se и т. д.).

Для существования жизни и для того, чтобы организмы могли расти, развиваться и размножаться, эволюция создала несколько классов биологических молекул. К этим классам относятся белки, жиры, углеводы и нуклеиновые кислоты. Первые три класса вам могут быть знакомы как основные нутриенты, и диетологи призывают следить за тем самым балансом БЖУ.

С точки зрения химии внутри каждого класса биологических молекул присутствуют единство структуры. Оставив в стороне нуклеиновые кислоты (это все-таки в поле интересов генетики), познакомимся с каждым из классов по отдельности. Но для полной картины узнаем еще об одной очень интересной и гораздо более разрозненной по структуре группе веществ – витаминах. Но для полной картины познакомимся еще с одной очень интересной и гораздо более разрозненной по структуре группой веществ – витаминами. Они нам очень пригодятся, когда дальше будем обсуждать непосредственно ферменты.

Белки

Философы прошлого говорили, что жизнь – это форма существования белковых тел. Правы они или нет, судить не нам. Лучше перенесемся на зарю зарождения жизни на Земле. Около 4 миллиардов лет назад на очень еще юной планете (тогда ей было всего-то полмиллиарда лет) стали появляться первые биомолекулы. Что было раньше – белки или нуклеиновые кислоты (а именно РНК), на данный момент однозначного ответа нет. Более подробно вы можете прочитать об этом в других замечательных книгах, например в книге Михаила Никитина «Происхождение жизни. От туманности до клетки». Самое главное, что к этому моменту уже существовали небольшие молекулы – аминокислоты.

Аминокислоты состоят из атомов углерода, водорода, азота и кислорода (в некоторых еще есть сера). Главная особенность этих молекул в том, что в их структуре есть две группы атомов, которые мы будем называть дальше функциональные группы, а именно, карбоксильная группа (—СООН группа) и аминогруппа (—NH2). Эти две группы охотно реагируют между собой, образуя особую химическую связь, так называемую пептидную. Полученную молекулу называют пептид, а точнее дипептид, поскольку она пока состоит из двух остатков аминокислот.

Та аминокислота, которая «отдала» в образование пептидной связи карбоксильную группу, будет называться N-концевая, поскольку у нее осталась непрореагировавшая аминогруппа.

Вторая аминокислота будет тогда С-концевой, поскольку у нее осталась свободная карбоксильная группа. Именно эта карбоксильная группа в природе дальше способна образовать еще одну пептидную связь с третьей аминокислотой. С-конец сместится на один остаток аминокислоты вперед. Так будут получаться трипептиды, тетрапептиды и т. д.

Рисунок 3. Из двух аминокислот получается дипептид

В лаборатории задача пептидного синтеза очень трудоемкая и требует долгих часов искусной работы химика-органика. Сейчас существуют автоматизированные системы синтеза пептидов, но все равно это задача, которую «на коленке» решить не удастся. Парадоксально, что даже в тот момент, когда химик в поте лица синтезирует какой-нибудь скромный трипептид, в его клетках легко и непринужденно с биологических конвейеров по производству белков – рибосом – сходят все новые и новые полипептиды, состоящие из 100, 200 и даже 500 остатков аминокислот.

Эти полипептиды похожи на огромные товарные поезда, в которых вагонов (то есть аминокислотных остатков) так много, что кажется будто эта вереница не закончится никогда.

Самый длинный полипептид в организме человека – титин, который состоит из почти 40 тысяч «вагонов» (если быть точным, то 38 138) и включает в себя более 422 тысяч атомов. Его биологическая роль заключается в сокращении поперечнополосатых мышц (например, камбаловидной мышцы в икрах). Так что, когда в следующий раз будете недовольны формой своей мускулатуры, задумайтесь, что за каждое движение ваших ног отвечают белки-рекордсмены.

Иногда два полипетида объединяются в одну молекулу с помощью других видов химической связи. Так, например, образуется молекула инсулина, пожалуй, одного из самых знаменитых представителей класса пептидов. Он состоит из 2 небольших пепетидных цепей в 21 и 30 аминокислотных остатков, которые соединяются с помощью связи между атомами серы (дисульфидные связи).