Выбрать главу

Каждая из 20 аминокислот обладает определенным набором физических характеристик. Одни аминокислоты заряжены положительно, другие – отрицательно, третьи нейтральны. Одни большие, другие маленькие. Какие-то из них гидрофобные (по сути, жирные) и предпочитают не смешиваться с водой, другие – гидрофильные и легко с ней смешиваются. Представьте белок, в котором подряд идут несколько положительно заряженных аминокислот, затем – цепочка нейтральных гидрофильных аминокислот, а после них – несколько отрицательно заряженных (см. рисунок). Разноименные заряды притягиваются, поэтому, предоставленный сам себе, белок укладывается так, что его противоположные концы сближаются.

Теперь представьте белок, состоящий из гидрофобных (квадратики) и гидрофильных (кружочки) аминокислот. Этот белок окружен водой (преобладающим компонентом внутриклеточной среды) и укладывается так, чтобы гидрофобные фрагменты прятались в центре кольца из любителей воды. Ради ясности я нарисовал эту схемку в двух измерениях. На самом же деле вам нужно представить почти сферическое ядро из гидрофобных аминокислот, окруженное оболочкой из гидрофильных.

В любом реальном белке происходит множество таких взаимодействий между аминокислотами, а также между аминокислотами и окружающей их водой, что порождает силы, вынуждающие белок принять определенную конформацию. Каждый белок синтезируется в клетке как цепочка аминокислот, и эта цепочка укладывается в оптимальную трехмерную форму. По-научному этот процесс называется фолдингом белка.

Как почти всегда бывает в биологии, эта грубая картина не совсем верна. Некоторые белки, особенно крупные и склонные к агрегации, не укладываются без доли постороннего участия, и им на помощь приходят белки из класса шаперонов7. В комплексах белков-шаперонов есть полости, защищающие новорожденный белок от сложностей перегруженной клеточной среды и способствующие корректному фолдингу аминокислотной цепи. Несмотря на эпизодическое участие шаперонов, общий принцип содержания в белке плана собственной постройки весьма убедителен и широко распространен в живой природе.

Все белки, описанные выше, и десятки тысяч других за долю секунды укладываются в трехмерные формы, избегая бесчисленного множества неудачных вариантов, которые не вполне соответствуют предпочитаемым компонентами белка взаимодействиям. Такое мастерство удивительно: это как если бы листок бумаги вдруг сам сложился в идеальную фигурку оригами. Более того, форма подавляющего большинства белков однозначно определяется последовательностью аминокислот. Иными словами, одна и та же последовательность всегда укладывается в пространстве одинаково. Каждая молекула зеленого флуоресцентного белка формирует бочонок, а каждая молекула миоглобина – одинаковый набор завитков.

Оценить великолепие такой самоорганизации помогут несколько примеров. Представьте последовательность, в которой, как обычно, есть положительно и отрицательно заряженные аминокислоты, а также гидрофобные и нейтральные гидрофильные аминокислоты. (Кстати, заряженные аминокислоты всегда гидрофильны.) Наша цепочка может уложиться так, как показано на левом рисунке, – и это достаточно хорошо: гидрофобные фрагменты скрыты внутри, а разноименно заряженные – сближены. И структура на правом рисунке по тем же причинам будет не хуже.

Две представленные конформации, несомненно, различаются. Можно предположить, что если этому белку потребуется прикрепиться к какой-нибудь малой молекуле – например, к гормону, – то благодаря «карману» функциональной окажется лишь первая форма.

Оказывается, на удивление сложно понять, как цепочка аминокислот принимает единственную оптимальную форму. Анализ сил, воздействующих на случайную последовательность аминокислот – скажем, составляемую вслепую, вытягиванием аминокислот из шляпы, – и оценка затрат энергии показывают, что «достаточно хороших» конформаций могло бы возникать очень много, слишком много для того, чтобы цепочка в итоге неизменно укладывалась только в одну из них. Природа избегает такой множественности возможных форм: аминокислотные последовательности реально существующих белков не случайны, а отобраны за 4 миллиарда лет эволюции. Организмы, которые кодируют аминокислотные цепи, не укладывающиеся в одну оптимальную форму, страдают от нерабочих, а порой и вредных белков и потому имеют меньше шансов выжить и оставить потомство. Эволюционно устойчивыми оказываются организмы, которые кодируют аминокислотные последовательности с четкой и однозначной инструкцией по формированию трехмерной структуры.