Первая известная нам арабская книга по арифметике была написана ал-Хорезми — математиком, жившим около 825 года, примерно за четыреста лет до Фибоначчи[11]. Хотя те немногие, кто использовал его работу, вероятно, кое-что слышали о нем, большинству из нас он известен косвенно. Попробуйте быстро произнести «ал-Хорезми». Вы услышите слово «алгоритм», что значит «правило вычислений»[12]. Именно ал-Хорезми был первым математиком, установившим правила сложения, вычитания, умножения и деления с новыми индийскими цифрами. В другом своем трактате «Hisab al-jabr w'almuqabalah», или «Книге о восстановлении и противопоставлении», он описывает процесс решения алгебраических уравнений. От слова al-jabr произошло слово алгебра, или наука об уравнениях[13].
Одним из самых значительных и, уж конечно, самым знаменитым арабским математиком древности был Омар Хайям, живший приблизительно с 1050-го по 1130 год и известный как автор собрания стихов под названием «Рубайят»[14]. {*1}. Его знаменитый сборник из 75 четверостиший [слово рубайят определяет поэтическую форму] во времена королевы Виктории был переведен на английский поэтом Эдвардом Фитцджералдом. В этой тоненькой книжице больше воспеваются вино и мимолетность человеческого существования, чем наука и математика. Например, под номером 27 читаем:
Как сообщает Фитцджералд, в юности у Омара Хайяма было двое друзей, столь же блистательных, как и он сам: Низам ал-Мунк и Хасан ал-Сабах. Однажды Хасан предложил своим друзьям поклясться, что, если кому-нибудь из троих суждено достичь богатства и могущества, «тот, кому выпадет удача, не станет стремиться к преимуществу перед двумя другими и поделит ее на троих». Они дали клятву, а через какое-то время Низам стал визирем султана. Друзья разыскали его и напомнили про клятву, которую он выполнил, как обещал.
Хасан потребовал и получил место в правительстве, но, неудовлетворенный своим положением, оставил его, чтобы стать потом главой секты фанатиков, терроризировавшей весь мусульманский мир. Много лет спустя он организовал предательское убийство своего друга Низама.
Омар Хайям не просил ни чинов, ни титулов. «Величайшая милость, которую ты можешь оказать мне, — сказал он Низаму, — это позволить мне жить незаметно под сенью твоей славы, углубляясь в науку и молясь о ниспослании тебе Аллахом долгих лет жизни и преуспеяния». Хотя султан любил Омара Хайяма и был благосклонен к нему, «смелое эпикурейство мыслей и высказываний Омара вызывали в его время косые взгляды соотечественников».
Омар Хайям использовал новую систему счисления для совершенствования созданного усилиями ал-Хорезми языка вычислений, послужившего основой нового, более сложного языка алгебры. Кроме того, он использовал математические методы обработки астрономических наблюдений для реформирования календаря и построения числового треугольника, облегчающего вычисление квадратов, кубов и высших степеней; этот треугольник позднее был использован в XVII веке французским математиком Блезом Паскалем, одним из создателей теории выбора, оценки шансов и вероятностей.
Впечатляющие достижения арабов лишний раз показывают, как далеко может зайти и все же застрять на пороге логического завершения фундаментальная идея. Почему арабы со своими выдающимися математическими достижениями не смогли приблизиться к созданию теории вероятностей и управления риском? Я полагаю, это обусловлено их образом жизни. Кто определяет наше будущее: судьба, боги или мы сами? Идея управления риском всплывет только тогда, когда люди поверят, что они обладают некоторой степенью свободы. Подобно грекам и ранним христианам, склонные к фатализму мусульмане еще не были готовы к этому прыжку.
Около 1000 года новая система счисления преподавалась в мавританских университетах в Испании и еще кое-где, а также сарацинами на Сицилии. Сицилийская монета норманнской чеканки, датированная «1134 Anno Domini» {*3}— первый известный образец использования системы в действии. Однако широкого распространения новые числа не получили вплоть до XIII века.
[11]
Биографические материалы об ал-Хорезми взяты в основном из: [Muir, 1961; Hogben, 1968].
[13]
О подробной и плодотворной дискуссии, посвященной развитию алгебры и использованию ноля, см.: [Hogben, 1968, ch. VI].
{*1}
В русском переводе В. Державина