Выбрать главу

Но позвольте. Тогда в реальном течении жидкости возможна совершенно невероятная ситуация, когда скорость жидкости в некотором месте устремится к бесконечности (деление на ноль!). Но, не будет этого, потому что малейшее возмущение (даже тепловое движение молекул) столкнет частицу с этой неустойчивой траектории, в какую-нибудь сторону. Просто мы используем детерминированную модель, без учета вероятностных явлений. Иногда модель просто перестает соответствовать описываемому явлению из-за разрыва математических функций или их производных. Примером функции с разрывом является тангенсоида, если ее аргумент (угол) переходит через π/2. Например, набегающая на пологий берег волна становится все круче и, наконец, обрывается, разрушаясь.

Таким образом, мы пришли к почти всеобъемлющему объяснению возникновения случайных явлений в природе, так как уравнения Навье – Стокса охватывают все течения всех жидкостей и газов на нашей планете.

Второе серьезное возражение против такого детерминизма заключается в том, что даже теоретически невозможно предоставить демону Лапласа исходные данные для расчета – положения и скорости всех частиц. Во-первых, это практически неосуществимо, во-вторых, мы не можем обеспечить абсолютную точность этих данных. Последнее видно на примере перехода теплоты от горячего тела к холодному. Допустим два тела, между которыми происходит перенос теплоты, просто соприкасаются. Температура прямо связана с кинетической энергией молекул. То есть молекулы более горячего тела двигаются быстрее, чем молекулы холодного. И энергия будет передаваться при столкновениях молекул. Но, если мы имеем дело с классической механикой Ньютона, то скорости в любой момент можно мысленно обратить вспять (сменить знак времени). И система вернется в первоначальное состояние. Никакой неопределенности эта механика не дает. Теплота перейдет назад, от холодного тела к горячему. Но если это «первоначальное состояние» задано не абсолютно точно, то мы вернуться в него не сможем по простой причине, что при последующих столкновениях молекул первоначальная ошибка набегает. И даже небольшая ее величина приведет совершенно к другому результату. Сменив в какой-то момент знак времени, мы опять должны задать точно положения и скорости частиц. И, если мы этого не сделаем, то не придем к начальному состоянию. Опять мы естественно получили случайное явление. И даже мысленная попытка создать абсолютную точность опять приводит к бесконечности, т.е. к неопределенности, как и в предыдущем примере с монетой.

Исторически эта проблема существования случайных явлений в Природе, в первую очередь, в термодинамике, прояснялась с большим трудом, с привлечением великих ученых: Л. Больцмана, А. Пуанкаре, А. Эйнштейна, Д. Гиббса и др. Эта история подробно описана в книге [16]. Поэтому, если мы примем, что в Природе существует множество неопределенных явлений, результат которых неоднозначен, то нетрудно доказать неизбежность естественного возникновения необратимости, нарастания неопределенности. Для этого надо принять следующую аксиому.

Любая материальная система, существуя во времени рано или поздно попадает в такое состояние, из которого она может перейти в одно из возможных состояний с некоторой вероятностью. Этим утверждается, что в Природе существуют вероятностные явления.

Рисунок 1 иллюстрирует сказанное (стрела времени направлена вправо). Материальная система пришла в состояние A, и далее однозначно переходит в состояние B.

Рис. 1. Возникновение точек бифуркации

Но из этого состояния система имеет возможность перейти в одно из состояний C (точка бифуркации) с различной вероятностью (P1 или P2). На рисунке она перешла в состояние C2. Это состояние опять оказалось точкой бифуркации, и из него возможен переход в одно из трех состояний D, опять определенными вероятностями (P3, P4 или P5) и так далее. Конечно, точки бифуркации возникают через некоторое время, в зависимости от конкретной системы и ее окружения. Если теперь перенести рассмотренную ситуацию в реальный сложный мир, где эти вероятностные переходы встречаются многократно, и не ограничивать время, то мы приходим к явлению необратимости естественных процессов в Природе. В примере с подбрасыванием монеты мы как раз имеем точку бифуркации.

Из этого рисунка видно, что беспорядок (хаос) нарастает, растет неопределенность реального состояния системы. Вероятность осуществления некоторого состояния после каждой точки бифуркации падает. Кроме того, вернуться назад во времени невозможно (необратимость!). Получается, что этот возврат придется делать при условии, что система перешла после точки бифуркации именно в то состояние, из которого мы хотим вернуться назад. Но ведь она могла перейти и в другое состояние. Математически обратный переход можно выразить формулой, но только с применением понятия условной вероятности. То есть попасть точно назад, нет никакой гарантии. Это и есть закон о необратимости природных явлений. Второй закон термодинамики является частным случаем этого, более общего закона.