Рис. 1.1. Пирамида чтения
Эта пирамида работает как трехмерная карта для понимания, как осуществляется любая генетически запрограммированная способность, например зрение. Она тем не менее не объясняет, как можно применить все это к схеме (цепочке) чтения, потому что в нижнем слое нет генов, специфичных только для чтения. В отличие от своих составляющих, таких как зрение и речь, которые действительно генетически организованы, чтение не имеет непосредственной генетической программы, передающейся следующим поколениям. Таким образом, задействованные в этом процессе следующие четыре уровня должны учиться тому, как заново формировать необходимые пути каждый раз, когда чтением овладевает конкретный мозг. Это отчасти отличает чтение – и любое иное культурное изобретение – от других процессов, и объясняет, почему оно не приходит к детям так же естественно, как зрение или речь, которые запрограммированы заранее.
Тогда как же все это случилось в первый раз? Французский нейробиолог Станислас Деан рассказывает, что первые люди, которые изобрели письмо и работу с числами, могли делать это посредством того, что он назвал «нейронной переработкой» [14]. Например, в своей работе с приматами Деан показывает, что, если перед обезьяной поставить две тарелки бананов (на одной – два банана, а на другой – четыре), в задней коре мозга животного активируется некоторая область как раз перед тем, как обезьяна осознает разницу между тарелками и понимает, что в одной из них больше фруктов. Эта общая область мозга – один из отделов, который мы, люди, теперь используем для некоторых математических операций [15]. В том же ключе Деан и его коллеги доказывают, что способность узнавать слова при чтении использует эволюционно более древние цепочки (схемы), которые специализируются на опознании объектов [16]. Более того, точно так же, как способность наших предков с первого взгляда различать хищника и добычу превратилась во врожденную способность зрительной специализации, наше умение опознавать буквы и слова, возможно, включает в себя более глубоко встроенную способность, которая обеспечивает «специализацию внутри специализации» [17].
Если пойти дальше по пути Деана, может оказаться весьма вероятным, что умеющий читать мозг задействовал прежние нейронные пути, первоначально предназначенные не только для зрения, но и для связи зрения с концептуальными и языковыми функциями. Например, они могут обеспечивать связывание быстрого опознания формы с мгновенным выводом о том, что данный след означает опасность, а затем связать опознанный след хищника или врага с поиском слова. Следовательно, когда перед нашим мозгом стоит задача изобретения функций, подобных грамотности и умению считать, у него в распоряжении есть три оригинальных принципа действия: способность устанавливать новые связи между старыми структурами, способность формировать области поразительно точной специализации для узнавания моделей в массивах информации, а также способность учиться автоматически выбирать и связывать информацию из этих областей. Так или иначе, эти три принципа организации мозга – основание для всей эволюции и развития чтения, а также его расстройств.
Хитро организованные свойства зрительной системы – отличный пример того, как переработка уже существующих зрительных схем сделала возможным развитие чтения. Зрительные клетки обладают способностью становиться узкоспециальными и очень специфичными, а также создавать новые цепи между уже существующими структурами. Именно поэтому младенец появляется на свет с глазами, которые уже почти готовы функционировать и которые можно назвать исключительными образцами дизайна и точности. Вскоре после рождения ребенка каждый нейрон сетчатки глаза начинает соотноситься со специфическим набором клеток в затылочных долях мозга [18]. Из-за этой особенности строения нашей зрительной системы (она называется «ретинотопическая организация») каждая линия, диагональ, круг или арка, пойманные сетчаткой глаза, в мгновение ока активируют специфическую, специализированную локацию в затылочных долях (см. рис. 1.2).