Теперь есть все признаки, что систематическая эндогенная долгосрочная непредсказуемость имеет место во многих экономических и финансовых системах. Даже там, где успокаивающие механизмы сильны или где хаос не возникает в интервале текущего параметрического интервала, импульсы от других хаотических подсистем способны значительно увеличить неопределенность. Образно говоря, проблему можно сравнить со срубленным деревом, проходящим через речную стремнину. Даже если бы мы знали все, что нужно знать о гидродинамике, воде и форме русла, мы бы никогда не смогли просчитать траекторию бревна дальше чем на несколько метров за один раз. Также было бы невозможно определить, откуда оно пришло, основываясь на его положении в данный момент времени. Подобная аналогия применима и к экономике.
Следовательно, имеет место возрастающее осознание, что детерминированный хаос может иметь важное значение для более глубоко проникающих во временные пласты долгосрочных экономических прогнозов и что линейные модели дают весьма скудное представление о реальности. Понятно также, что динамические системы часто повторяют те же самые явления в различных масштабах, привнося, таким образом, больше сложностей в проблему прогнозирования.
Важный аспект, имеющий отношение к хаосу, это «размерность». Это слово используется математиками для описания сложного поведения динамической системы. Несмотря на то, что размерность — математическое выражение, оно может быть объяснено (популярным языком), как обозначение числа прошлых наблюдений для предсказания последующего движения.
Если система генерирует простые, синусоидальные осцилляции, предсказание становится пустячным делом и размерность равна нулю. Но если мы имеем дело с очень большим количеством взаимосвязанных обратных связей — положительных и отрицательных, — размерность резко возрастает, и вам понадобится много данных для «расшифровки» с помощью математики того, где вы находитесь в данный момент протекающего процесса. Когда размерность становится очень высокой, то даже очень большое количество исторических данных уже не поможет вам. Однако в этом случае невозможно доказать математическими методами присутствие неслучайной динамики. Как сказал Вильям А. Броук (1990), «на практике невозможно даже сказать, что образовало данные — детерминированная система высокого порядка или стохастическая система».
Основываясь на современных положениях науки, становится понятным, что в реальности над финансовыми рынками господствуют сильные контуры обратной связи, создающие хаос высокого порядка (определяемый высокими значениями размерности), который математически расшифровать крайне сложно. Это частично доказывается математическими тестами, показывающими, что существует «нечто», не являющееся случайным, — даже просто невозможно точно выразить, что это именно такое. Частично это было доказано нашими периодически повторяющимися крахами, демонстрирующими присутствие сильных контуров обратной связи.
Если детерминированный хаос — это то, что мы имеем, попытки аналитиков выполнить точные расчеты истинной величины начинают выглядеть, как попытки заниматься алхимией. Учитывая, что определение истинной стоимости акции исходит из того, что она приведенная стоимость всей будущей прибыли компании, то это просто смешно, если мы можем предвидеть только год, шесть месяцев или даже и того меньше.
Возможно, нам следует вспомнить ранее приводимое описание поведения профессиональных экспертов, сделанное Кейнсом:
…большинство из этих людей сильно беспокоит не создание первоклассных долгосрочных прогнозов возможного дохода от инвестирования на всем его протяжении, а предсказание изменений в условном базисе оценивания, которое бы шло чуть впереди основной публики.