Следовательно, перед нами та форма интуиции (высшая по сравнению с интуицией предыдущего уровня), которую можно было бы назвать «сочлененной интуицией» — в противоположность простым интуициям. Но эта сочлененная интуиция, приближаясь к операции (и впоследствии достигая ее путем совершенно незаметных подчас переходов), остается негибкой и необратимой, как само интуитивное мышление в целом, поэтому она отнюдь еще не представляет «группировки» в собственном смысле слова, а является всего лишь продуктом последовательных регуляций, которые завершаются тем, что сочленяют отношения, вначале глобальные и не поддающиеся анализу.
Это различие между интуитивными (наглядными) и операциональными методами становится еще менее значительным, если рассматривать включение классов и сериации асимметричных отношений, составляющих наиболее элементарные «группировки». Но, само собой разумеется, что ставить проблему следует лишь относительно интуитивной сферы — единственно доступной на этом уровне, — а не для сферы формального, связанного только с языком. Для выяснения того, что представляет собой включение классов, поместим в коробку десятка два бусинок, относительно которых ребенок признал, что они «все из дерева», и которые, следовательно, образуют единое целое В. Большая часть этих бусинок коричневого цвета. Они образуют часть А. Некоторые же из них белые. Они образуют дополнительную часть А'. Чтобы определить, способен ля ребенок понять операцию А + А' = В, т. е. соединение частей в целое, можно поставить перед ним следующий несложный вопрос: каких бусинок, деревянных или коричневых, больше в этой коробке, т. е. А < В? При этом все бусинки остаются видимыми для ребенка. Ребенок вплоть до 7 лет почти всегда отвечает, что больше коричневых, «потому что белых всего две или три». Тогда мы уточняем: «Коричневые сделаны из дерева? — Да. — Если я достану из коробки все деревянные бусинки и положу их сюда (вторая коробка), останутся ли бусинки в первой коробке? — Нет, потому что они все деревянные. — А если я достану коричневые, бусинки останутся? — Да, белые.» Затем повторяем первоначальный вопрос, и ребенок вновь начинает утверждать, что в коробке больше коричневых бусинок, чем деревянных, потому что только две белые бусинки, и т. д.
Механизм этого типа реакций легко объяснить: ребенок легко центрирует свое внимание отдельно на всем В или на частях А и А', уже раз изолированных в мысли, но трудность состоит в том, что, центрируя свое внимание на А, он разрушает этим целое В, так что часть А тогда не может сравниваться больше ни с чем, кроме другой части А'. Следовательно, здесь вновь имеет место распадение целого из-за недостатка мобильности в последовательных центрациях мышления. Но можно идти еще дальше. Попросив ребенка представить, что произойдет, если сделать ожерелье из деревянных бусинок В, или из коричневых А, мы вновь сталкиваемся с предыдущими трудностями, но со следующим уточнением: если я сделаю ожерелье из коричневых, отвечает иногда ребенок, то я не смогу сделать другого ожерелья из тех же бусинок, ожерелье из деревянных бусинок будет состоять только из белых! Именно рассуждения такого рода (в которых нет ничего абсурдного) выявляют различнее, отделяющее интуитивное мышление от операционального: в той мере, в какой интуитивное мышление имитирует реальные действия на основе образного умственного опыта, оно сталкивается с подобным препятствие, когда ребенок не знает, как практически сделать два ожерелья одновременно из одних и тех же элементов, но в той мере, в какой работает операциональное мышление (посредством интериоризованных действий, ставших полностью обратимыми), ничто уже не препятствует субъекту выдвинуть одновременно две гипотезы и сравнить их между собой.
Не менее поучителен пример с сериацией линеек А, В, С и т. д., размеры которых различны, но близки друг к другу (и которые должны сравниваться попарно). Малышам 4–5 лет удается образовать только не координированные между собой пары: ВD, АС, EG и т. д. Затем ребенок конструирует короткие ряды, но при этом ему еще не удается расположить в ряд 10 элементов каким-либо другим путем, кроме последовательных нащупываний. Более тот, когда его ряд закончен, он не может вставить туда новый член, не разрушая при этом целого. Для того чтобы сериация удавалась сразу, например методом, состоящим в выборе сначала самого маленького из всех членов, затем самого маленького из оставшихся, и т. д., нужно достичь операционального уровня. Но именно на операциональном уровне становится возможным и умозаключение (А < В) + (В < С) = (А < С), тогда как на интуитивных уровнях ребенок отказывается вывести из двух перцептивно построенных неравенств А < В, В < С заключение, что А < С.