В июле 1794 года в Конвент было внесено предложение о создании школы, «в которой преподавали бы не науки, а искусство преподавания». Уже в октябре 1794 года в Париже открываются четырехмесячные курсы, которые затем были преобразованы специальным постановлением в Нормальную школу, предназначенную для подготовки преподавателей средних и высших учебных заведений.
Еще до этого, в марте 1794 года, Конвент принял решение о создании высшей школы с иным назначением: «Воспитать различных инженеров, восстановить обучение точным наукам, которое было прервано во время кризисов революции, и давать высокое научное образование молодым людям или для того, чтобы быть употребленными правительством в работах Республики, или для того, чтобы принести в свои родные места просвещение, которое они получат, и там расточать в самом деле полезные знания». В 1795 году этой школе в законодательном порядке присвоили название Политехнической и четко определили ее задачу. В соответствии со своим названием она должна была выпускать не готовых инженеров, а учащихся, подготовленных для последующей специализации в практических высших учебных заведениях более узкого профиля. Любому будущему инженеру она должна была дать единообразную общеинженерную подготовку. Таким образом, обучение в этой школе можно сравнить с двумя первыми общеобразовательными курсами многих современных технических вузов. Кстати, с 1799 года в этой школе было установлено двухгодичное обучение вместо прежних трех лет.
С первых же дней Политехнической школе оказывается непосредственное внимание и поддержка сначала со стороны революционного правительства, а затем — со стороны пришедшего к власти Наполеона. К преподаванию привлекаются лучшие представители французской науки: Лагранж, Фурье, Лакруа, Пуассон, Ампер, Коши, Пуансо, Монж, Лиувилль и другие. Постановка образования в школе стала образцом для многих учебных заведений, и не только во Франции. Наряду с резко выраженной теоретической подготовкой в программах школы много внимания уделялось прикладным предметам.
В XIX веке Политехническая школа становится одним из важнейших факторов научно-технического прогресса во Франции, поставляя кадры для подготовки военных и гражданских инженеров высшей квалификации. Среди ее выпускников немало знаменитостей — выдающихся математиков, механиков, астрономов, химиков. Школа располагала органом для научных публикаций — «Журналом Политехнической школы». Влияние ее в научной жизни страны еще больше возросло, когда в законодательном порядке была принята обязательная публикация читаемых в ней лекций. Большая часть учебников по математике того времени была написана во Франции именно на основе этих лекций.
К моменту окончания Анри Пуанкаре лицея Политехническая школа одна во всей стране набирала и подготавливала претендентов на высшие технические должности в государственном аппарате и в армии. Это обстоятельство особенно подчеркивал Антона Пуанкаре, настойчиво рекомендуя своему племяннику поступать только в Политехническую школу. Ее выпускники направлялись для последующего обучения в специальные учебные заведения: Институт путей сообщения, Горный институт, Военно-инженерную школу, Артиллерийскую школу, которые непосредственно готовили офицеров артиллерии или инженерных войск, гражданских инженеров или высших государственных чиновников. Но выбор \ последующего специального учебного заведения не был свободным, а определялся качеством выпускного свидетельства. Владельцам лучших дипломов Политехнической школы был открытый доступ в любую из последующих специальных школ, и чем хуже был диплом, тем ограниченнее оказывался выбор.
Первые месяцы учебы Анри регулярно пишет в Нанси, поверяя сестре и родителям свои впечатления о школе и о парижской жизни, В его письмах, написанных ясным, четким стилем, мадам Пуанкаре и Алина с удивлением начинают обнаруживать специфические обороты и жаргонные словечки политехников, которыми Анри щеголяет с удовольствием и даже с некоторой лихостью. Со своими соучениками он поддерживает ровные приятельские отношения, ни с кем особенно не сближаясь. Старые дружеские связи влекут его на улицу Ульм, к окруженному небольшим садом аристократическому зданию Высшей Нормальной школы, где учится Аппель. В свободное от занятий время они нередко бродят вместе по улицам и бульварам среди предающихся фланерству парижан. Иногда к ним присоединяется Альбер Жилль, если ему удается вырваться из Сен-Сира.
Вечерние часы — самое оживленное время в столице. Отработавший люд высыпает на улицы. Окна магазинов, кафе и ресторанов, тянущихся без перерыва на всем протяжении бульваров, ярко освещены. К удивлению Анри, Париж так же великолепен и опрятен, как и в 1867 году, когда он приезжал сюда на Всемирную выставку. Поврежденные и разрушенные в 1871 году здания, которых оказалось не так уж много, восстанавливаются или застраиваются новыми. В развалинах остаются лишь Тюильрийский дворец, Ратуша и Контрольная палата. Захваченные беспечным весельем праздной толпы, бесцельно влекущейся по длинной аллее под темными кронами лип и вязов, друзья жадно вдыхают пьянящий воздух уличного раута, поневоле заражаясь радостно-возбужденным настроением. В свете многочисленных газовых фонарей по Елисейским полям движется сплошной поток пешеходов и экипажей: дамы в огромных, украшенных перьями шляпах, щеголи в сюртуках и цилиндрах, с тросточками в руках. Пройдя всю аллею от дворца Промышленности до Триумфальной арки, Анри и его спутники поворачивают и проделывают весь путь в обратном направлении до площади Согласия.
Система обучения в Политехнической школе такова, что знания буквально вколачивались в головы учащихся до полного овладения предметом. Помимо профессоров, которые вели основные курсы, имелся еще целый контингент репетиторов, в обязанности которых входило объяснять на занятиях лекционный материал и производить проверку знании. Тщательно продуманный учебный план предъявлял высокие требования к воспитанникам. «Все меры строгости, воздействия на честолюбие, окрыляемое перспективой блестящей жизненной будущности, привлекались здесь для того, чтобы заставить учащегося до крайности напрягать свои силы» — так отзывался ведущий немецкий математик Ф. Клейн о характере обучения в Политехнической школе того времени. Девиз школы — «За отечество, науки и славу» — ревностно проводился в жизнь.
Каждое занятие начинается с краткого воспроизведения материала предыдущей лекции, которое проделывает кто-нибудь из учащихся. Но литографические отпечатки лекций запаздывают и раздаются лишь спустя неделю, то есть через четыре занятия. При подготовке к очередному опросу политехникам приходится рассчитывать только на свои конспекты и на свое понимание лекционного материала. Поэтому они группируются вокруг сильных студентов, сообща прорабатывая все трудные и тонкие места прослушанной темы. Пуанкаре порой разочаровывает своих приверженцев тем, что не стремится к подробной записи лекций.
Курс математического анализа в Политехнической школе ведет первый математик Франции Эрмит, имя которого пользуется авторитетом в широких научных кругах Европы. Механику Пуанкаре слушает в изложении выдающегося ученого Резаля. Геометрию преподает достаточно известный в то время математик Маннгейм. Астрономию читает прекрасный астроном Фэй. Физика находится в ведении Корню, ставшего впоследствии председателем Французского физического общества. По окончании учебного года политехники сдают чрезвычайно строгие экзамены. Среди экзаменаторов имеются такие известные в научном мире имена, как Жордан (по математическому анализу), Брессе (по механике), Кабар (по физике). Помимо физико-математических дисциплин, учащимся преподаются химия, начертательная геометрия, черчение, фортификация, архитектура и даже история и литература.
Общение с прославленным Эрмитом создает у слушателей ощущение непосредственной причастности к великому таинству математического творчества. Он любит начинать свою лекцию словами: «Начнем с тождества…», после чего на доске появлялась формула, в точности и подлинности которой можно было не сомневаться, хотя лектор не считал нужным посвящать аудиторию в загадку ее происхождения. С этого отправного пункта Эрмит увлекал своих слушателей в захватывающее путешествие через удивительные математические метаморфозы и преобразования, пока они не достигали заветного результата. Казалось, что все излагаемые им идеи рождаются прямо на их глазах, что они присутствуют на потрясающем сеансе неповторимой математической импровизации.