Выбрать главу

Что же так занимало его ум и властвовало в душе? Неужели до такой степени увлек его неоконченный роман? Последующее замечание Лекорню проливает свет на этот вопрос. Когда несколько дней спустя они встретились на набережной порта и разговорились, Анри с невозмутимым видом произнес: «Я теперь умею интегрировать любые дифференциальные уравнения». «Я догадываюсь, о чем он думал, переходя из 1879 в 1880 год», — добавляет Лекорню. Оказывается, мысли Анри были обращены к дифференциальным уравнениям и методам их решения. И судя по всему — уже не первый месяц.

В области математических наук XVIII век завещал XIX веку великую проблему, которая не решена полностью и по сию пору, — интегрирование дифференциальных уравнений. Это была проблема номер один для математиков прошлого столетия, но решения ее ждали представители всего точного естествознания, потому что дифференциальные уравнения были единственной математической формой описания естественных процессов. Когда ученые хотят выразить на математическом языке движущиеся, изменяющиеся или развивающиеся явления, они вынуждены вводить в уравнения характеристики этого движения, изменения — скорости, а то и ускорения. Так появляются в науке дифференциальные уравнения, в которые величины входят не сами по себе, как в алгебраические уравнения с «иксами», не под знаком логарифма или тригонометрической функции, как в трансцендентные уравнения, а в продифференцированном виде, в виде скоростей их изменения. Подавляющее большинство природных процессов описывается именно такими уравнениями.

Построить физическую теорию для ученых прошлого века означало прежде всего найти дифференциальные уравнения, описывающие движение всех частей исследуемой системы, будь это планеты, вращающиеся вокруг Солнца, или мельчайшие, невидимые глазу частицы газа. В начале XIX столетия Лаплас считал даже, что вся вселенная с математической точки зрения представляет собой лишь огромную совокупность дифференциальных уравнений и ничего больше. Ум, способный разом охватить и решить эти уравнения, мог бы предсказывать будущее мира. К концу XIX века дифференциальные уравнения все еще выступали основной формой представления точного знания. Поэтому умение их решать, интегрировать, как говорят математики, являлось насущной потребностью времени.

Но очень скоро ученые убедились, что они могут справиться лишь с крайне незначительным числом таких уравнений. Скрытую в них неизвестную величину не удавалось порой выразить никакой комбинацией математических функций. Уж не погоня ли это за призраком? Быть может, уравнения эти в принципе неразрешимы? Такие сомнения были отметены знаменитым французским математиком Огюстеном Коши, который в первой половине XIX века строго доказал, что при известных условиях всегда существует решение дифференциального уравнения. Подстегиваемые твердым убеждением, что искомое существует, ученые тщетно пытались отлить его в какую-нибудь знакомую математическую форму. Решение ускользало, как неясная мысль, которую не удается высказать словами. Слишком беден был математический язык науки, слишком скуден запас функций на складе математики. В дополнение к хорошо известным элементарным функциям уже были открыты и изучены некоторые новые, например гамма-функции, зета-функции, цилиндрические функции. В начале XIX века к ним присоединился новый класс функций — эллиптических. Но среди них не находилось подходящих, в которых могло бы воплотиться все богатство решений дифференциальных уравнений. Математики познали «муки слова», которые до сих пор считались уделом мастеров поэзии и прозы.

Такую картину застал Анри Пуанкаре, когда он занялся теорией дифференциальных уравнений. Изо дня в день он ходит в университет, читает лекции, ведет занятия, принимает экзамены, гуляет по городу, встречается с немногочисленными знакомыми, почти автоматически выполняет массу неизбежных повседневных дел и терпеливо и неотступно вынашивает свои идеи. Цель ясна, да и не ему одному, но не видно к ней никаких подступов. Один за другим отпадают рождающиеся в его мозгу варианты, такие заманчивые и многообещающие на первый взгляд, но не выдерживающие сколько-нибудь пристального критического рассмотрения.

Задумчиво перелистывая как-то математический журнал, Анри заинтересовался одной статьей. Немецкий математик Лазарь Фукс тоже работает над теорией дифференциальных уравнений и много преуспел в этой области. Анри не нужно повторно читать статью, он и так сумел схватить самую ее суть. Одна мысль автора захватила его воображение: построить функции, через которые выражаются решения дифференциальных уравнений, как выражаются решения алгебраических уравнений через абелевы трансцендентные функции. Анри словно заглянул в затянутый туманной дымкой, неясный, но внушающий надежду мир. Не попытаться ли расширить таким образом наличный состав математических функций, пополнить их новыми функциями, которые позволили бы наконец выразить искомые решения дифференциальных уравнений? Он тщательно анализирует выводы немецкого математика, проверяет его выкладки и доказательства, находит в них ряд сомнительных мест. Попутно у него рождаются собственные идеи и догадки, которые тоже требуют проверки.

Как раз в это время завершался срок подачи работ на конкурс «Гран-при» по математике, объявленный Академией наук. Тема конкурса была как нельзя более подходящей: усовершенствовать в некоторых пунктах теорию интегрирования линейных дифференциальных уравнений. Забыта тетрадь с неоконченным романом, который Анри дописывал первое время после переезда в Кан. Отныне он одержим только одной идеей, которой отдает все свои силы и время. Призрачный, туманный мир все больше проясняется перед его внутренним взором. Уже 28 мая Пуанкаре представляет на конкурс свой мемуар,[10] содержащий анализ и дальнейшее развитие идей, изложенных Л. Фуксом.

Большой приз по математике за 1880 год присудили Жоржу Альфану, работа Пуанкаре была для этого еще слишком незрелой и слишком поспешной. Ведь он только коснулся благодатного источника, породившего в нем могучий каскад идей. В его мемуаре лишь эскизно намечался тот грандиозный план, который столь блистательно был осуществлен им в последующие годы. Но оригинальность и плодотворность его идей не ускользнули от опытного, проницательного взора Шарля Эрмита. В своем докладе по работам, поданным на конкурс безымянными, он особо отметил исследование, девизом которого служило латинское изречение. Глава французской школы математиков призывал неизвестного автора неуклонно следовать по избранному им пути, который представлялся ему в высшей степени обнадеживающим. Это была работа Анри Пуанкаре.

Диалог с математиком из Гейдельберга

Уже на следующий день после представления своей работы на конкурс, то есть 29 мая 1880 года, Пуанкаре пишет Лазарю Фуксу письмо. Завершив свой многодневный напряженный труд, он решает выяснить некоторые мучившие его сомнения и воздать должную дань восхищения автору статьи, оказавшей на него столь сильное влияние. Анри сообщает, что с большим интересом прочитал мемуар и просит разрешения задать ряд вопросов. Одновременно он высказывает свои соображения относительно выводов, сделанных в этом исследовании. «…Я должен признаться, монсеньор, что эти размышления вызвали у меня некоторые сомнения относительно общности результата, о котором вы сообщаете, и я решил вам об этом сказать в надежде, что вы не сочтете за труд их рассеять».

Сорокасемилетний гейдельбергский профессор, ученик знаменитого Вейерштрасса, читавший лекции в Берлинском университете, когда Пуанкаре еще ходил в младшие классы лицея, вовсе не помышляя о карьере математика, поначалу снисходительно отнесся к молодому и неизвестному французскому коллеге. Разрабатывая теорию линейных дифференциальных уравнений, Лазарь Фукс создал вместе со своими учениками целый цикл работ, которые составили новое мощное направление в математике прошлого века. Во многих европейских странах находились последователи этой известной научной школы. Вклад немецкого математика в теорию линейных дифференциальных уравнений был столь велик, что само имя Фукса воспринималось тогда как синоним этой теории. Между прочим, непосредственным толчком к занятиям дифференциальными уравнениями явилась для Фукса, как и для Пуанкаре, знаменитая монография Брио и Буке.

Письмо Анри не возмутило спокойствия главы гейдельбергских математиков. Он вежливо отвечает ему 5 июня на немецком языке: «Глубокоуважаемый коллега, примите прежде всего мою глубокую благодарность не только за тот интерес, который вы проявили к моей последней работе, но также и за то, что ваше письмо привлекло внимание к теореме в моей статье, сформулированной с недостаточной точностью…» Пуанкаре отвечает письмом от 12 июня, в котором он решается обратить внимание Фукса на некоторые неясности в его исследовании. Далее он пишет: «…Функции, которые вы определили, обладают весьма замечательными свойствами, и так как я намерен опубликовать полученные мною результаты, прошу вашего разрешения дать им имя фуксовых Функций, поскольку это вы их открыли. Я у вас прошу также разрешения показать ваше письмо мсье Эрмиту, который очень интересуется этим вопросом…»