Весьма энергичный и уверенный в себе, Эмиль Пикар пришелся по душе Аппелю и Пуанкаре. Их дружба крепнет с каждым днем. Сообща они участвуют в одном начинании Гастона Дарбу, возглавлявшего в это время кафедру высшей геометрии в Сорбонне. Еще в 1870 году Дарбу основал специальный журнал "Бюллетень математических наук и астрономии", призванный в какой-то степени решить весьма остро стоявшую тогда проблему ознакомления французских математиков с исследованиями и достижениями зарубежных коллег. Но для бесперебойного функционирования журнала необходим был контингент сотрудников, знающих языки и хорошо разбирающихся в математике, которые могли бы не просто переводить статьи, а даже рецензировать и комментировать их. Прибывшие в Париж молодые математики сразу же оказались среди самых деятельных участников в подготовке выпусков этого издания.
Общие научные интересы и даже совместное творчество еще теснее сплачивают математическое трио. Подхватив и продолжив исследования Пуанкаре по фуксовым функциям, Пикар вводит в математику аналогичные функции, но уже не одного, а двух переменных, назвав их гиперфуксовыми. В соавторстве с Пуанкаре он доказывает знаменитую теорему Римана об однородных функциях. Пуанкаре же в своих работах по определителям бесконечного порядка словно бы начинает диалог с Аппелем, ведущим изыскания в том же направлении.
Визит к Ковалевской
— На этот раз мы к вам с добрыми вестями, — прямо с порога заявляет Эрмит, останавливаясь в дверях и пропуская вперед Пикара, Аппеля и Пуанкаре.
Ковалевская встретила их заинтересованным, чуть смущенным взглядом. Сколько раз ей приходилось слышать об этих молодых французских математиках! Совсем недавно познакомившись с ними, она еще не успела утолить острое чувство любопытства, хотя это был уже не первый их визит. Гости, стараясь скрыть свое стеснение, толпились в небольшой комнате, которую явно не мешало бы привести в порядок, до того она была заполнена небрежно разбросанными вещами — книгами, исписанными листами бумаги, принадлежностями для рукоделия, детскими игрушками. Только Эрмит чувствовал себя непринужденно и уверенно, источая на всех свою любезность и покровительство.
— Не далее как вчера мы приняли вас в здешнее математическое общество, — продолжает он. — Теперь готовьтесь к докладу на ближайшем заседании. Что вы имеете доложить?
Застенчиво поблагодарив, Ковалевская на минуту задумалась. Глаза ее сразу посерьезнели.
— По следам Ляме я принялась за математическую теорию распространения света в кристаллах. Считаю его выводы не вполне удовлетворительными. Могу доложить часть уже проделанной работы.
— Что ж, это будет интересно, — решает Эрмит. — Окончательные результаты можно будет потом опубликовать в «Докладах» нашей академии. Ну а второе известие касается вашего глубокоуважаемого учителя и наставника. Сегодня утром я получил записку от господина Фрейсине,[16] в которой он сообщает, что президент республики подписал приказ о присвоении господину Вейерштрассу звания кавалера ордена Почетного легиона. Хочу, чтобы вы первая сообщили эту новость вашему знаменитому другу.
Шарль Эрмит неоднократно уже высказывал в присутствии Ковалевской свое неизменное уважение к выдающемуся немецкому математику. И хотя оба ученых играли одинаково ведущую роль в отечественных математических школах, он любил повторять в кругу своих молодых друзей: "Наш общий учитель — это господин Вейерштрасс".
Перед глазами Ковалевской всплывают строчки из недавно полученного ею письма Вейерштрасса: "О твоем знакомстве с Эрмитом я уже узнал от него самого. Он написал мне с большим восторгом об этом и перечислил все вопросы, которых вы коснулись в вашей первой беседе. Тебе, вероятно, теперь также придется войти js сношения с другими математиками, из которых тебя наиболее заинтересуют младшие: Аппель, Пикар, Пуанкаре. Пуанкаре, по моему мнению, наиболее способный из всех к математическим рассуждениям. Только бы он не рассеял свой исключительный талант и дал созреть своим исследованиям. Теоремы об алгебраических уравнениях с двумя переменными и линейных дифференциальных уравнениях с алгебраическими коэффициентами, которые он дал в "Comptes rendus", действительно производят впечатление. Они открывают анализу новые пути, которые приведут к неожиданным результатам". И вот все трое под предводительством шестидесятилетнего Эрмита удостоили визитом ее неказистые меблированные комнаты на Гранд рю.
— В последнем письме господин Вейерштрасс жалуется на ноги, — отвечает Ковалевская на обращенный к ней вопрос о том, как обстоят дела на Линкштрассе, 33.[17] — Пишет, что порой вынужден читать лекции сидя, а кто-нибудь из студентов выписывает на доске формулы. Врачи находят у него расширение вен, но вся беда в том, что господин Вейерштрасс не признает никакого лечебного средства, кроме чая из ромашки.
— А отказаться на время от лекций он, конечно, не хочет, — скорее констатирует, чем спрашивает Эрмит.
— Нет, ни в коем случае, хотя и без того нагрузка у него немалая: подготовка к изданию трудов Якоби и Штейнера, различные факультетские, сенатские и академические заседания. Сетует, что на математические исследования у него не остается уже ни времени, ни сил.
— Это очень досадно. Мы все ждем, когда он опубликует свою теорему о приведении абелевых интегралов к "эллиптическим, на которую вы ссылаетесь в своем мемуаре, — с легким оттенком разочарования произносит Пикар.
— Боюсь, что к этому господин Вейерштрасс приступит не скоро. Ведь он уже изложил эту теорему в письмах некоторым коллегам.
— Нам бы очень хотелось с ней ознакомиться. — В голосе Пикар а звучит свойственная ему настойчивость. — Дело в том, что она в некотором отношении является обобщением моей теоремы, поскольку сформулирована для интегралов произвольного рода.
— С другой стороны, в теореме Пикара приведение продвинуто несколько дальше, — подхватывает Пуанкаре. — Я пытался самостоятельно доказать теорему Вейерштраеса. Было бы интересно сравнить мой метод с его собственным. Оба варианта доказательства я почерпнул из арифметики. — И, прочтя недоумение на лице Ковалевской, поспешил добавить: — Не удивляйтесь, ведь вся проблема, по существу, является чисто арифметической.
— Интересно, можно ли сформулировать еще более общее утверждение, заключающее в себе сразу обе теоремы, то есть взять общность теоремы Вейерштраеса, но продвинуть приведение так далеко, как это сделано у Пикара?
Отвечая на вопрос Аппеля, адресованный сразу всем присутствующим, Пикар с надеждой взглянул на Пуанкаре:
— По-моему, Анри уже имеет какие-то соображения на этот счет.[18]
Но Пуанкаре не любил обсуждать еще нечетко представляемые им самим идеи и догадки и поэтому смущенно промолчал.
— Господин Вейерштрасс, в свою очередь, пытается обобщить теорему господина Пуанкаре о представлении в параметрической форме переменных, удовлетворяющих алгебраическим уравнениям.
Обращаясь непосредственно к Пуанкаре, Ковалевская воспользовалась случаем, чтобы внимательно вглядеться в этого необычайно одаренного, по мнению ее учителя, математика. Он стоял, заложив руки за спину, задумчиво хмурясь и помаргивая глазами. Невысокий, сутуловатый, с несколько крупной для своего телосложения головой. Чувствовалось, что в отличие от друзей он так и не смог преодолеть свою застенчивость. Она уже знала, насколько обманчива эта почти безмятежная рассеянность мысли, запечатленная на его лице. В своих исследованиях по фуксовым функциям Пуанкаре обнаружил поразительную живость и быстроту ума, оставив у немецких ученых чувство некоторой растерянности перед столь стремительным интеллектуальным натиском. До чего же тесен математический мир, если двум-трем выделяющимся из общей массы ученым не удается порой разминуться в своих творческих исканиях! Ковалевская вспомнила, как в своей докторской диссертации 1874 года она невольно предвосхитила многие из результатов Г. Дарбу по теории дифференциальных уравнений с частными производными. Вейерштрасс по этому поводу написал даже специальное письмо Эрмиту.