То, что корреляция не говорит о наличии причинно-следственной связи, авторы научных статей знают (это могут забывать те, кто по мотивам аннотации пишут затем статью в популярный блог), но есть еще один момент, который не дает нам прямо воспользоваться результатами исследований, — эргодичность. Точнее, ее отсутствие. Этим словом называют свойство системы, при котором я могу использовать знание, полученное при наблюдении большого количества объектов в один момент времени, для определения результатов большого количества наблюдений, но уже одного объекта. Например, я могу подбросить 100 монеток один раз и результат будет таким же, как если бы я подбросил 100 раз одну монетку. А вот любимый пример Талеба — игра в русскую рулетку — свойством эргодичности не отличается. Если 1000 человек сыграют один раунд в русскую рулетку, то в среднем 870 из них выживут, но если один человек сыграет в эту игру 1000 раз…
Рис. 29. Эргодичность
Примерно то же происходит и с научными изысканиями. Ученые часто исследуют большие выборки людей непродолжительное время, но полученные таким образом результаты далеко не всегда можно транслировать на себя самого (один человек и продолжительное время). Другими словами, если я напою 100 человек кофе и измерю прирост их продуктивности, я получу, скорее всего, не такой результат, как если бы я сам пил кофе 100 дней и усреднял свой прирост производительности. Именно поэтому научные работы могут быть полезными для учителя (имеющего дело со множеством людей), но они не настолько полезны для ученика (желающего изучить и улучшить одного себя).
Из-за отсутствия эргодичности и из-за того, что мы очень сильно отличаемся друг от друга, бывает опасно обобщать свой успешный опыт многих месяцев жизни или опыт каких-то известных личностей на других людей (подробнее об этом еще будет в разделе 4.7). У Андрея Ломачинского есть довольно «чернушная» история, очень хорошо иллюстрирующая последствия неаккуратного переноса своего опыта на других людей. Называется «Метанол на опохмел»{24}. Но предупреждаю: книга в общем и этот рассказ в частности — не для впечатлительных!
Например, рассмотрим некоторое гипотетическое исследование некой гипотетической методики для повышения личной эффективности. Предположим, что кто-то провел исследования и утверждает, что эта методика дает прирост производительности «в среднем на 16 %». Тут стоит заметить, что «на данный момент не существует универсально принятого метода измерения производительности работников умственного труда или даже общего понимания его категорий» (это дословная цитата из исследования Нембарда и Рамиреса, где описаны два с лишним десятка различных подходов к измерению умственного труда с анализом ограниченной области применимости каждого из них{33}). Тем не менее на минуту предположим, что авторы этого исследования смогли операционализировать и сделать измеримым это понятие хотя бы в каком-то приближении, пригодном для их собственных целей. Главное не в этом, а в том, что, скорее всего, это среднее было получено путем усреднения по группе испытуемых и, соответственно, ничего не говорит о том, как менялась производительность отдельно взятых людей с течением времени. Еще один момент, который упускается в научно-популярных публикациях, — указание среднего без указания дисперсии. Мой любимый пример (наверняка редактор вырежет): «У среднего человека одно яйцо и одна сиська». Яркий пример, когда дисперсия результата сравнима со средним значением.
В нашем примере среднее повышение производительности на 16 % может быть достигнуто при условии, что в группе из 25 человек один повысил свою производительность в четыре раза, а у остальных не поменялось ровным счетом ничего. Или у пятерых испытуемых производительность повысилась на 240 %, а у остальных снизилась на 40 %. А может, у четверых эффективность повысилась на 625 %, а все остальные вообще умерли и теперь их производительность равна нулю. Это все так же будет означать повышение «в среднем на 16 %».
Результаты исследований (и то не все и не всегда) могут дать намек, куда копать и что попробовать в первую очередь. Но относиться к их итогам как к предсказанию своих результатов не стоит. Чтобы понять, какой результат вы получите в своих условиях, надо взять и попробовать.