Интуиция – это смысл математики. Без интуиции математика не значит буквально ничего. И все же не нужно из этого заключать, что если вы ничего не понимаете в математике, то с этим уже ничего не поделать.
Ошибочно считать, что математическая интуиция – нечто статичное, непреодолимый рубеж. Ведь наше интуитивное представление о математических объектах не врожденное, не застывшее. Мы можем выстраивать его, выращивать день ото дня, если только следовать верной методике.
Математики прекрасно знают, что официальная математика – та, что в учебниках, – рассказывает не все. Они прекрасно знают, что истинная задача – суметь понять то, что в учебниках, суметь увидеть это и почувствовать.
Поэтому в повседневной жизни их занимает вопрос, как развивать свою интуицию, чтобы она становилась богаче. Интуиция математика – в гораздо большей степени, чем его публикации и официальные работы, – это его шедевр, творение всей жизни.
Это необыкновенное искусство видеть, чувствовать, действительно понимать и находить очевидным то, что 99.9999 %[2] человечества считает чудовищно абстрактным и в высшей степени непостижимым, – великое искусство математиков и их великая тайна. Лишь те, кто занимался этим, знают, куда может привести данное искусство.
Но как у них получается? Вот о чем эта книга.
Три секрета математиков
1. Занятия математикой – это физическая активность. Чтобы понять то, чего не понимаешь, нужно выполнять в уме скрытые действия – невидимые, но необходимые, – которые позволят обогатить интуицию и развить новые мысленные представления, более глубокие и мощные. Это деятельность, которая усиливает и обогащает нас. Учиться заниматься математикой – значит учиться пользоваться своим телом. Это то же самое, что и учиться ходить, плавать, танцевать или ездить на велосипеде. Эти действия не даны нам от рождения, но все мы способны им научиться.
2. Есть метод, позволяющий отлично разбираться в математике. Этот метод никогда не преподают в школе. Впрочем, он не похож ни на какую школьную методику и противоречит всем принципам традиционного образования. Он требует не усилий, а простоты. Его можно сравнить с техникой скалолазания, боевым искусством, своего рода йогой или медитацией. Он учит нас преодолевать страхи, обуздывать позыв к избеганию неизвестного, учит находить удовольствие в столкновении с противоречием. Это способ перепрограммировать нашу интуицию. А значит, это не просто метод, помогающий отлично разбираться в математике, – это метод, позволяющий стать очень умным.
3. Мозг великих математиков работает так же, как и наш. Как и с другими видами физической активности, естественная склонность к математике, конечно, распределена между людьми неравномерно. Но это биологическое неравенство играет все же не такую важную роль.
Математические навыки распределены так чудовищно неравномерно, что биологическая гипотеза не выдерживает критики. Несомненно, некоторым людям генетически присуще более эффективное, быстрое и мощное взаимодействие нейронов, которое – почему бы и нет? – может сделать их, скажем, в два раза способнее к математике. Но владеть правильным методом, развить правильные умственные рефлексы, занять правильную психологическую позицию – значит стать способнее к математике в миллиард раз.
Есть другое, намного более простое и правдоподобное объяснение, почему существует столь вопиющее неравенство в способностях к математике: нас никогда не учат методу, как начать отлично разбираться в математике. Все отдается на волю случая. Каждому приходится заново, самостоятельно и наудачу открывать крупицы методики. А чаще всего никому не удается ничего открыть, потому что некоторые ключевые моменты метода неожиданны и идут вразрез с интуицией. Пройти мимо них очень легко.
Мозг великих математиков работает так же, как и наш. Но их личная история, их способ выстроить взаимоотношения с миром дали им возможность познакомиться с этим методом с детства. Они приобщились к нему самостоятельно, не имея такого намерения и не зная, что они делают. Просто так случайно повернулась жизнь.
Устная традиция
Многие ученые-математики признавались, что ощущали себя самоучками. Если вспомнить, какое место занимает математика в школьном образовании, такое ощущение выглядит парадоксальным.
2
Автор намеренно использует точку, а не запятую в качестве десятичного разделителя, о чем в конце книги сделано отдельное примечание.