Система 1 – это то, что позволяет вам без усилия давать мгновенные инстинктивные ответы. Когда вас спрашивают, сколько будет два плюс два, в каком году вы родились или кто тяжелее – слон или мышь, вы не раздумываете. Ваша Система 1 позволяет ответить мгновенно. Но все та же Система 1 заставляет ошибочно отвечать, что мячик стоит 10 центов.
Система 2 – это то, что вы приводите в действие, когда вас спрашивают, сколько будет 47 × 83 или сколько дней прошло с вашего рождения. Вы можете это сосчитать, но вам надо подумать. Может быть, вам даже понадобятся бумага и карандаш. Ясно одно: вам совершенно не хочется это делать. Пусть даже Система 2 надежнее и строже, вы используете ее только тогда, когда у вас нет выбора, потому что думать, производить вычисления и логические рассуждения – дело утомительное.
Теорию Канемана можно кратко изложить так.
Каждый раз, когда Система 1 дает нам ответ, мы чувствуем искушение воспользоваться им, не обращаясь к Системе 2 – даже чтобы проверить, что ответ Системы 1 верен. Поскольку Система 2 задействует много умственных ресурсов и энергии, мы отдаем предпочтение инстинкту. Биологически мы предрасположены к интеллектуальной лени.
В некоторых ситуациях наша Система 1 систематически ошибается. Мы все совершаем одни и те же ошибки, постоянно, словно у нас в мозгу неверно подключены провода. Это и есть пресловутые когнитивные искажения, которые Канеман и его школа задались целью изучить. Например, нам всем хочется сказать, что мячик стоит 10 центов.
Книга Канемана потому и получила такой успех, что выходит за пределы простой теоретической констатации и предлагает конкретную методику, чтобы не дать нам сесть в лужу.
Рекомендация проста: выучить наизусть список когнитивных искажений, представленный в его книге, и каждый раз, осознавая, что мы находимся в одной из этих типичных ситуаций, принуждать себя мобилизовывать Систему 2 без учета Системы 1.
Лично я думаю, что есть способ лучше, и сейчас я вам его объясню.
«Это нечестно!»
Впервые я услышал про эту историю с мячиком и битой от подруги, которая изучала когнитивистику в Принстоне. Она как раз прочла книгу Канемана и хотела проверить ее на мне.
Как и большинство людей, я дал инстинктивный ответ. Я прислушался к своей Системе 1, не зная, что это называется какой-то там Системой 1. Не раздумывая, не вычисляя, я сказал первое, что пришло мне на ум: «5 центов».
Я тут же ощутил, что мой ответ смутил подругу, но не сразу понял почему. Она не поленилась объяснить мне, что не так. По-хорошему, предполагалось, что я отвечу «10 центов» или же задумаюсь на несколько секунд и только тогда скажу «5 центов». А вот отвечать так, как я только что ответил, сразу же говорить «5 центов», не тратя времени на размышление, я не имел права. Кто-то даже получил Нобелевскую премию за то, что доказал, что это невозможно. Вскоре, прежде чем сменить тему разговора, моя подруга все же нашла объяснение – простое, прагматичное и не то чтобы полностью неверное: «Стоп, это нечестно, ты же математик!»
Когда я решил повторить этот тест в моем окружении, я был искренне удивлен тем, сколько людей отвечают «10 центов», и еще больше удивлен, что им сложно найти правильное решение, даже когда они понимают, что первоначальный ответ неверен. Самое невероятное – все говорили мне, что «надо посчитать», словно визуально не было очевидно, что правильный ответ «5 центов».
Я оказался в ситуации Дальтона с его волшебной геранью, только вместо недостающей колбочки, наоборот, видел больше цветов, чем мои друзья. Еще одно различие между мной и Дальтоном, конечно, в том, что причина никак не была связана с генетикой.
В конце этой главы я объясню, как у меня получается видеть правильный ответ и как вы можете тоже научиться его видеть.
A или B
Поскольку эта история с мячиком и битой заинтриговала меня всерьез, я стал пытаться понять, что мешало моим друзьям увидеть правильный ответ, хотя он и был очевиден.
Примерно как Дальтон, я провел собственное небольшое расследование и думаю, что нашел ответ. Предложив друзьям тест с мячиком и битой, я задавал им такой вопрос:
«Представь, что ты должен принять жизненно важное решение. У тебя есть вариант A и вариант B. Интуиция подсказывает выбрать A, но разум говорит выбрать B. Как ты поступишь?»
Я задал этот вопрос примерно десяти своим друзьям-нематематикам, и почти все не задумываясь ответили, что следуют своей интуиции и выбирают A. Один человек выбрал B. Еще один долго колебался и не дал ясного ответа.