Выбрать главу

Мыслить масштабно также побудили масштабные общественные усилия по систематическому изучению микробиома Земли. Одним из них стал консорциум Earth Microbiome Project, созданный в 2010 году под руководством микробиологов Роба Найта и Джека Гилберта из Калифорнийского университета в Сан-Диего. В 2017 году этот консорциум опубликовал в журнале Nature масштабное исследование, целью которого была стандартизация критериев классификации таксонов микробиома и решение других насущных проблем, связанных с определением характеристик микробов, а также наведение порядка в развивающейся области экологической микробиологии. В исследовании приняли участие более пятисот ученых, а 27 751 образец был получен из сорока трех стран. "Эти образцы представляют собой множество типов образцов и охватывают широкий спектр биотических и абиотических факторов, географических мест и физико-химических свойств", - пишут Найт и Гилберт в редакционной статье, опубликованной в 2018 году в журнале mSystems.

Исследование, по словам Найта и Гилберта, дало ученым возможность "проверить фундаментальные гипотезы биогеографии, в том числе выявить закономерности, которые ранее были возможны только для "макробиологической" экологии. Кроме того, экологические тенденции продемонстрировали ключевые принципы организации, согласно которым экосистемы с меньшим разнообразием сохраняют таксоны, которые встречаются в образцах с большим разнообразием". Полученные данные также позволили исследователям "изучить факторы, лежащие в основе глобальных тенденций разнообразия", и, используя информатику.

 

Благодаря этому они смогли "выявить местную адаптацию и, следовательно, экологическую специфику подвидов". Это стало продолжением анализа генетического и протеомного разнообразия первых сорока одного образца, взятого из Sorcerer II, о чем сообщалось в работах JCVI в специальном выпуске PLoS Biology 2007 года.

В рамках проекта "Микробиом Земли", добавляют Найт и Гилберт, не удалось изучить функции генов или пролить свет на другие молекулярные процессы, например, на то, какие белки экспрессируются этими генами и какова роль метаболитов в этих организмах. Изучение таких явлений известно как мультиомика, поскольку она объединяет несколько "омических" методов, таких как геномика, протеомика, микробиомика и метаболомика. В последние годы мультиомика стала модным направлением в молекулярной биологии, хотя одновременный учет стольких динамических процессов остается фантастически сложной задачей.

"Чтобы оценить, как микробы распределены по средам в глобальном масштабе - и следует ли динамика микробных сообществ фундаментальным экологическим "законам" в планетарном масштабе, - требуется либо масштабное монолитное исследование всех сред, либо практическая методология координации многих независимых исследований", - пишут Найт и Гилберт. Они также отметили, что, даже когда образцы и исследования накапливаются, вопрос о том, что все это значит, остается нерешенным. Ученые просто переполнены данными - любопытное дополнение к скудости данных, которая преобладала до 2003 года.

 

ОДИН из способов представить себе микробные экосистемы на Земле и их влияние на человека - это вообразить нечто сродни русской матрешке. Это матрешка внутри матрешки, а внешний слой - это экосистема, которую мы видим из космоса, сферическая, окрашенная в синий, зеленый и белый цвета. Эта огромная экосистема, поддерживающая жизнь, какой мы ее знаем, содержит все остальные экосистемы внутри экосистем, вплоть до микроэкосистем в море, в глубинах Земли, на пестике розы или внутри вас.

Микробная экосистема человека - всего лишь одна из почти бесконечного числа субматрешек на Земле. Но поскольку человеческий микробиом довольно важен для большинства организмов, читающих эту книгу, мы будем использовать его в качестве примера. В книге о микробиоме моря и Земли мы уделим немного времени описанию того, как проект Sorcerer II и экологическая микробиология за последние двадцать лет способствовали нашему пониманию триллионов крошечных организмов - эукариот, архей, бактерий, вирусов и грибков, - которые живут внутри и на теле Homo sapiens.

По последним оценкам, средняя популяция микроорганизмов внутри нас составляет около тридцати девяти триллионов. Количество бактериальных клеток примерно равно количеству гораздо более крупных человеческих клеток. Микробы несут в себе в пятьсот - тысячу раз больше генов, чем человеческие клетки, но на их долю приходится менее одного фунта от общего веса среднего человека.