Другой способ — представить число, парящее над объектом. Это число обозначает положение в четвертом измерении, в которое перемещается объект.
Измерения могут выражаться не только с помощью указания на положение точки. Например, для выражения температуры тоже необходимо число. Если мы говорим, что частица находится в некоторой точке, и ее температура равна двадцати семи градусам, на самом деле мы используем четыре измерения: три для пространства и одно для температуры. То же происходит, если говорить об интенсивности электромагнитного поля области или о влажности; для каждой из этих величин нам нужны новые числа, значит, мы увеличиваем размерность изучаемой системы.
Другой способ, помогающий наглядно представить пространства высокой размерности, связан, как ни странно, с сокращением количества измерений. Большинство движений, которые могут быть изучены, происходят на самом деле в двух измерениях: например, вращение Земли вокруг Солнца совершается по орбите в виде эллипса и может быть схематически отображено на бумаге без каких-либо затруднений. Таким образом, для представления движения нам нужно только два измерения, а третье мы можем использовать для других интересующих нас величин, таких как энергия или импульс. То есть мы можем использовать пространственные измерения для представления величин, никак не связанных с пространством.
Познакомившись с n-мерными пространствами, мы можем рассмотреть, как они используются для описания поведения молекул газа. Для начала сосредоточим внимание на одной частице, а затем расширим анализ на неограниченное их число.
Вспомним, что положение частицы может быть описано с использованием любого типа координат, необязательно в прямоугольной системе. Поскольку наше пространство имеет три измерения, нам необходимо три числа для указания положения частицы. Координаты могут быть любыми, так что обозначим их через q и добавим какой-нибудь индекс: q1, q2 и q3.
Однако знание положения частицы не дает нам достаточно информации для возможности прогнозировать ее поведение. Для этого мы должны также знать, в каком направлении частица движется и с какой скоростью. В качестве варианта мы можем использовать импульс, который является произведением массы частицы на скорость (этот способ предпочитают физики, поскольку он значительно упрощает вычисления).
Для определения как импульса, так и скорости также нужно три числа. Предположим, что кто-то говорит нам: «Автомобиль выезжает на скорости 100 км/ч из Стамбула. За сколько времени он доедет до Москвы?» Ответ зависит от того, в каком направлении он едет: если авто выезжает на юг, поездка окажется очень длинной, потому что водителю придется обогнуть земной шар, но если он поедет напрямую в сторону Москвы, то прибудет на место намного раньше. Итак, недостаточно знать скорость автомобиля, нам нужно и число для определения направления. Кроме того, если бы у автомобиля была возможность летать, нам понадобилось бы и третье число, чтобы показать, что он движется не вверх, а горизонтально.
Другой способ понимания заключается в том, что у скорости есть три составляющие, по одной для каждого возможного направления. Каждая составляющая говорит нам о скорости, с которой объект движется в этом направлении. Поскольку импульс частицы — это масса, умноженная на скорость, нам также нужны три составляющие, по одной для каждой составляющей скорости.
Так как мы используем обобщенные координаты, каждой координате приписывается обобщенный импульс, обозначенный буквой р. Координате q1 соответствует импульс p1 и так далее.
Следовательно, чтобы представить частицу, нам нужно шесть чисел: три для положения и три для импульса, и это означает, что частица движется по шестимерному пространству. Положение частицы можно представить математически, записав три положения, а затем три импульса. Если обозначить положение в этом абстрактном пространстве положений и импульсов через r, мы можем его выразить следующим образом:
r = (q1, q2, q3, p1, p2, p3)