Некоторые динамические системы демонстрируют поведение, которое кажется стихийным, но это справедливо не всегда. Например, камень, брошенный ребенком, описывает параболическую траекторию, и его движение представляет собой динамическую систему, которая при этом полностью предсказуема. Даже динамические системы высокой сложности могут порождать очень простые модели. В целом хаотичное или нехаотичное поведение системы задано как законами, управляющими ею, так и начальными условиями движения.
Теория хаоса изучает динамические системы, поведение которых непредсказуемо, причем хаотичное поведение могут демонстрировать даже простые системы.
Рассмотрим функцию под названием логистическое отображение, которое описывает движение только в одном измерении, с единственной координатой х. Предположим, что мы начинаем с некоторого числа х: логистическое отображение дает нам правило для получения следующего х с помощью простых умножений и вычитаний.
Математическая формула для его нахождения следующая:
xn + 1 = r·xn·(1 — xn),
где r — некий параметр, который мы можем произвольно изменить.
Предположим, что мы берем r = 4 и начинаем с х1 = 0,5. Тогда х2 равно:
х2 = 4·0,5·(1 – 0,5) = 1.
Следуя тому же правилу, х3 равно:
х3 = 4·1·(1 – 1) = 0.
И так далее.
Оказывается, что если выбирать значения r от 3,56995 до 4, то поведение логистического отображения оказывается непредсказуемым: малейшие изменения первого значения х порождают абсолютно разные значения последующих значений х. Это хаотическое поведение можно проиллюстрировать бифуркационной диаграммой, изображенной ниже, которая показывает возможные конечные значения х для каждого значения r. На диаграмме видно, как диапазон возможных значений х становится огромным при некотором значении r, а это признак хаотического поведения.
Изучение хаотических систем стало возможным благодаря прогрессу в вычислениях в последние десятилетия. Компьютерное моделирование позволило классифицировать все траектории системы и, следовательно, сделать качественный прогноз их поведения. Возможно, если бы в конце XIX века уже существовали компьютеры, изучение газовой динамики пошло бы по пути, сильно отличающемуся от того, который привел к развитию статистической механики. Однако ограниченные вычислительные возможности заставили физиков и математиков искать другие способы прогнозирования для объектов высокой сложности.
Изучение динамических систем — крайне актуальная область, необходимая для решения множества проблем, начиная от создания искусственного интеллекта до решения биологических задач. Идея состоит в том, чтобы смоделировать систему, развитие которой в абстрактном пространстве задано рядом правил. Затем изучаются различные возможные траектории развития и выводятся их общие характеристики.
Любой газ можно считать динамической системой. Его положение в фазовом пространстве определяется положениями и импульсами всех его частиц, а изменение его состояния определяется уравнениями Гамильтона. Теория динамических систем может быть применена для вывода некоторых общих характеристик поведения газов, к которым затем можно будет применить другие инструменты, такие как вероятность или статистика. При изучении газовой динамики нужно различать два режима газа: в состоянии равновесия или вне него. Анализировать газ в состоянии равновесия, то есть газ, состояние которого не меняется, относительно просто, и эта задача была решена Людвигом Больцманом (1844–1906) в конце XIX века без применения инструментов, связанных с динамическими системами. Его работу подробнее мы рассмотрим в главе 3. Проблема газа вне равновесия намного сложнее и до сих пор полностью не решена, хотя начиная с 70-х годов прошлого века в ее решении произошел значительный прогресс именно благодаря применению теории динамических систем. Более подробно об этом мы расскажем в главе 5.