* * *
ЦИКЛ КАРНО
Первая формулировка второго закона термодинамики принадлежит Николя Леонару Сади Карно (1796–1832) — французскому инженеру, который занимался изучением эффективности паровых машин. Карно сосредоточился на идеальной машине, или машине Карно, в которой источник тепла нагревает газ, газ расширяется и выполняет работу, чтобы затем снова сжаться при контакте с источником холода.
Карно открыл, что эффективность его машины ограничена разницей температур, создаваемых этими двумя источниками; он доказал также, что его идеальная машина — наиболее эффективная из возможных, но на практике любая машина будет менее эффективной. Это стало первой формулировкой второго принципа термодинамики, что в итоге привело к появлению понятия энтропии.
* * *
Однако в этих поисках родилось понятие энтропии. Физики того времени осознали, что в любом процессе во Вселенной энергия стремится распределиться таким образом, что всегда в итоге оказывается меньше полезной энергии, чем было вначале. Энтропия системы — это мера рассеивания ее энергии. Поскольку энергия стремится рассеиваться, как мы заметили в примере с двигателями, можно предположить, что энтропия в любом процессе стремится расти. Так родился второй закон термодинамикиf который гласит: суммарная энтропия изолированной системы будет увеличиваться.
Второй закон термодинамики нельзя было вывести из более фундаментальных принципов. Казалось, что само его существование противоречит законам Ньютона, которые не имеют направленности во времени и справедливы как по отношению к будущему, так и по отношению к настоящему. Иными словами, законы Ньютона воздействуют на такие системы, словно бильярдные шары на поле, и невозможно увидеть запись их столкновения на повторном просмотре. Однако второй закон термодинамики показывает разницу между прошлым и будущим: будущее — это то направление, в котором растет энтропия.
В дальнейшем будет видно, как развивалось понятие энтропии, которая перестала быть инструментом изучения газа и превратилась в один из столпов математической теории информации, а затем была применена к еще более фундаментальным проблемам.
В предыдущей главе мы видели, что газ стремится к макросостоянию, для которого характерно наибольшее число микросостояний, совместимых с ним. Это дает нам много информации о макроскопическом состоянии газа. Предположим, что у системы есть три различных возможных макросостояния, из которых у первого — два микросостояния, совместимых с ним, у второго — четыре, а у третьего — 300 тысяч миллионов. Если мы наблюдаем систему в случайно выбранный момент, существует огромная вероятность того, что мы наблюдаем ее в третьем макросостоянии, просто потому что оно имеет намного больше возможностей для возникновения. Можно сказать, что вероятность третьего макросостояния намного больше, чем двух других.
Если мы посчитаем общее число микросостояний, получится:
N = 2 + 4 + 300 000 000 000 = 300 000 000 006.
Вероятность первого состояния равна числу микросостояний (2), разделенному на общее число возможных микросостояний, то есть:
Между тем вероятность третьего равна:
Позже мы увидим, как наиболее вероятные состояния соответствуют более высокой энтропии.
Теперь предположим, что у нас есть газ в коробке, и, используя поршень, мы заставляем все молекулы разместиться в ее верхнем углу, как показано на рисунке.
Если мы уберем поршень, как поведет себя газ? Куда будут двигаться его частицы?
Опыт и здравый смысл говорят нам, что они будут стремиться заполнить весь объем коробки. Это совпадает со вторым законом термодинамики, в котором утверждается, что энергия стремится от большей концентрации к меньшей. Вначале энергия очень концентрированная, поскольку она вся находится в углу коробки; но как только объем расширился, энергия стала меньше. Посмотрим, что гласит модель газа Больцмана.