Выбрать главу

Для проверки прогноза по модели распределения Больцмана обратим внимание на число микросостояний, которые имеют оба макросостояния: то, которое соответствует расположению газа в верхнем углу коробки, и то, которое соответствует равномерному распределению газа по всему объему. Представим, что молекулы могут занимать только определенные области, располагаясь решеткой. Так мы можем сравнить число микросостояний одной и второй конфигураций. Сделаем огромную по сравнению с молекулой решетку, чтобы расчеты были более понятными, и представим себе, что у коробки только два измерения, то есть квадрат, представленный на фигуре ниже, — это вся коробка.

Предположим, что наш газ имеет три частицы. В первом случае они будут ограничены верхней левой площадью коробки, отмеченной серым. Как видно, для этой области есть 25 возможных положений для каждой из частиц. Поскольку у нас есть три частицы, которые мы можем расположить где угодно без наложений, общее число микросостояний будет 25·24·23 = 13800.

Теперь обратим внимание на целую коробку. Ее сторона равна 10 единицам, так что общее число возможных позиций равно 100. Общее число микросостояний равно 100·99·98 = 970200. Итак, очевидно, что гораздо больше микросостояний совместимо со второй возможностью, чем с первой. Действительно, мы можем вычислить вероятность того, что газ окажется в верхнем углу. Это будет число совместимых микросостояний, разделенное на общее их число:

Итак, существует 98,6 % вероятности того, что газ займет всю коробку. Если бы мы взяли больше частиц и более мелкую сетку, то получили бы более значительную разницу. Таким образом, модель распределения Больцмана говорит то же самое, что и термодинамика.

Можно задаться вопросом, существует ли какой-нибудь микроскопический способ понять энтропию термодинамики. Энтропия — это величина, которая возрастает в каждом изолированном процессе и дает нам меру разрежения энергии. Можем ли мы найти какую-то величину, которая бы тоже выросла в процессе, который мы только что изучили? Ответ — да: возросло число микросостояний. Если в начале мы насчитывали их 13 800, то в конце — почти миллион. Число микросостояний показывает нам, какова вероятность получения этого макросостояния; кроме того, разумно предположить, что система всегда эволюционирует в сторону наиболее вероятного состояния. Итак, мы можем прийти к выводу, что энтропия и число микросостояний могут быть каким-то образом связаны.

* * *

ЛЮДВИГ БОЛЬЦМАН И АТОМЫ

Людвиг Больцман (1844–1906), портрет которого вы видите рядом с этими строками, был австрийским физиком, который ввел идею, что такие термодинамические явления, как температура, на самом деле — крупномасштабное проявление микроскопического поведения атомов. В то время само существование атомов еще вызывало дискуссии, и многие коллеги ученого отвергали его теорию, считая, что не существует никакого доказательства того, что материя состоит из элементарных частиц.

Больцман покончил жизнь самоубийством в 1906 году — как гласит легенда, из-за того, что научное сообщество отвергло его идеи. На самом деле это было связано с проблемами медицинского характера, а не с научным разочарованием. Через два года после смерти Больцмана Жан Батист Перрен (1870–1942) подтвердил существование атомов с помощью эксперимента над броуновским движением, в котором маленькие частицы пыли хаотично двигались, сталкиваясь с молекулами жидкости.

* * *

К этому же выводу пришел и Больцман, которому удалось доказать, что энтропия пропорциональна логарифму числа микросостояний, умноженному на его известную постоянную. Логарифм обозначается как log и является обратным экспоненте. Например, выражение log3 говорит нам, в какую степень мы должны возвести число 10, чтобы получить 3. Математически энтропия Больцмана выражается следующим образом:

S = k·logW,

где S — энтропия, — постоянная Больцмана и — число микросостояний.

Энтропия как хаос

В популярной литературе часто встречается объяснение энтропии как хаоса. Теперь, когда мы знаем связь между энтропией и числом микросостояний, мы можем понять, почему это происходит. Самый простой способ увидеть это — обратить внимание на доску, покрытую шашками.