Выбрать главу

* * *

Странные аттракторы существуют везде. Наиболее удивительный их пример встречается в метеорологии, поскольку погода также следует непрогнозируемым моделям. Еще примеры — двойной маятник, представляющий собой один маятник, прикрепленный к оконечности другого, или проблема трех тел с взаимным притяжением, рассмотренная в главе 2.

Диссипативные системы

Теперь мы можем вплотную подойти к проблеме газа вне состояния равновесия. Вспомним, что система в этом состоянии характеризуется постоянным притоком энергии. Также нам нужно вспомнить второй закон термодинамики, согласно которому для любой изолированной системы энтропия стремится увеличиваться. Поскольку наш газ обменивается энергией с внешним миром, мы не можем говорить об изолированной системе, но мы можем считать источник энергии и наш газ единой системой, для которой энтропия должна будет расти.

Энтропия, как было сказано раньше, — это мера рассеяния энергии. То, что энтропия стремится к увеличению, означает, что энергия стремится все больше рассеиваться, и это очень важно для понимания поведения любой системы, получающей энергию извне. Примером системы такого типа является и человек: необходимую энергию мы получаем из еды. Подобным же образом ведет себя и земная атмосфера, хотя она получает энергию из солнечного излучения. В целом существует намного больше систем такого типа, чем систем в состоянии равновесия, так что их изучение принципиально для понимания законов существования Вселенной.

Во втором законе термодинамики говорится, что когда газ получает значительное количество энергии из внешнего источника, его поведение должно вести к росту общей энтропии. Газ принимает структуру, которая рассеивает энергию как можно эффективнее, что, в свою очередь, вызывает появление упорядоченных моделей, поведение которых, на первый взгляд, противоречит второму принципу термодинамики в том смысле, что энтропия газа уменьшается. Но нужно помнить, что газ не изолированная система, следовательно, к нему неприменим второй закон, он справедлив только для системы, включающей в себя источник энергии и окружение. При таком подходе рост упорядоченности газа вызывает увеличение хаотичности вокруг него, так что второй закон термодинамики все еще оказывается справедливым.

Поскольку тело стремится рассеять энергию как можно эффективнее, структуры такого типа называются диссипативными системами. В следующих абзацах вы увидите, что результаты, касающиеся поведения динамических систем и типов равновесия, окажутся крайне важными для понимания диссипативных систем.

При изучении таких систем нужно различать ситуации, близкие и далекие от равновесия. Предположим, что у нас в контейнере газ комнатной температуры: поскольку его температура и число частиц остаются постоянными, мы можем сделать вывод, что он находится в состоянии стабильного равновесия, или, другими словами, в неподвижной точке динамической системы. Но если сейчас мы слегка поколеблем газ, например слегка ударим контейнер, то мы изменим распределение его молекул. Однако вспомним главный признак стабильного равновесия: после небольшого отклонения от равновесия система возвращается в свое исходное состояние. Итак, при небольших отклонениях можно ожидать, что состояние газа не отклонится от равновесного. И пока газ находится близко от состояния равновесия, мы можем предположить, что его поведение предсказуемо. Даже если мы слегка нагреем газ, то можем вычислить, что произойдет, если скорректируем наши уравнения газа, пользуясь теорией возмущений. Состоит она в том, чтобы, опираясь на решения для состояния равновесия, вносить в них поправки, компенсирующие небольшие отклонения от этого состояния.

Если мы обеспечим приток к газу большого количества энергии, все изменится. Наша динамическая система выйдет из сферы влияния аттрактора, и ее поведение перестанет быть предсказуемым. Однако изучение динамических систем позволяет нам сделать некоторые важные прогнозы. Например, мы знаем, что газ будет стремиться к новому аттрактору, если дать ему достаточно времени. Если нам известны различные аттракторы нашей динамической системы, мы можем рассчитать несколько траекторий ее поведения после выхода из состояния равновесия.