Выбрать главу

Чтобы отличить обобщенные координаты от прямоугольной системы координат, оси которых названы х, у, z, используется буква q с индексами — q1, q2  или q3. Это очень удобно, когда рассматриваются системы с несколькими частицами, как в случае с газом.

В предыдущем примере с полярными координатами, где положение на плоскости задано расстоянием до центра и углом, можно определить:

q1 = r

q2 = Θ

Другой пример — сферические координаты.

В этом случае для определения положения в пространстве нужны три числа: расстояние до центра и два угла, как показано на рисунке. В этом случае получаются следующие обобщенные координаты:

q1 = r

q2 = Θ

q3 = ф

Существует неограниченное количество вариантов, каждый из которых подходит для разных задач. Преимущество формулировки Лагранжа заключается в том, что координаты подстраиваются к задаче, а не наоборот.

Числовое значение лагранжиана определяется не только положением частицы, но и ее скоростью, квадрату которой пропорциональна кинетическая энергия. Скорость частицы определяется как изменение положения за единицу времени: если известно положение тела в каждый момент, известна и его скорость.

Зависимость лагранжиана от положения тела и, в свою очередь, от его изменения, усложняла решение уравнений. Если бы лагранжиан зависел только от положения, проводить вычисления было бы намного легче.

Уильям Роуэн Гамильтон предложил решение этой проблемы. Его идея заключалась в том, чтобы переформулировать уравнения Эйлера — Лагранжа таким образом, чтобы они зависели только от положения тела, но не от его скорости. Для этого оказалось необходимым понятие импульса.

Импульс — это мера того, насколько сложно остановить тело. Чем тяжелее тело и чем быстрее оно движется, тем больше усилий необходимо, чтобы его затормозить. Поскольку импульс растет как вместе с массой, так и вместе со скоростью, он определяется как произведение обеих величин. Импульс обозначается буквой р и математически выражается как:

р = m·v,

где m — масса, а — скорость.

Понятие импульса было известно с древности, хотя современную трактовку он получил от Ньютона, который говорил, что импульс представляет собой количество движения. На основании законов Ньютона можно доказать, что для системы, на которую не воздействуют внешние силы, количество движения остается постоянным. Если мы сложим импульсы каждой частицы в разные моменты времени и сравним результаты, то увидим, что суммы импульсов равны.

Разговор об этом понятии тесно связан с третьим законом Ньютона, в котором утверждается, что любому действию соответствует равное ему противодействие. Более точная формулировка звучит так: когда тело А оказывает некоторую силу на тело В, последнее оказывает на тело А такую же силу в противоположном направлении.

Представим себе человека, опирающегося о стену. В это время человек оказывает на нее силу F. Стена, в свою очередь, воздействует на человека аналогичным образом, но в противоположном направлении, благодаря этому мы и не можем проходить сквозь стены. Точно так же Земля воздействует на нас с силой, равной той, с которой мы воздействуем на Землю, и благодаря этому мы не проваливаемся к центру планеты. Что произошло бы, если бы мы воздействовали на Землю с силой больше нашего веса? В этом случае Земля ответила бы такой же силой, и мы бы отлетели бы от ее поверхности, то есть совершили прыжок.

Используя закон действия и противодействия, можно доказать, что импульс системы частиц должен оставаться постоянным. Возьмем предыдущий пример с прыжком: с одной стороны, человек толкает Землю вниз, в то время как Земля толкает человека вверх. Сила, примененная к человеку, вызывает изменение его скорости, согласно второму закону Ньютона, в котором говорится, что сила пропорциональна ускорению. Точно так же сила, примененная к Земле, влечет изменение ее скорости. Естественно, изменение скорости человека намного больше: масса человека по сравнению с массой Земли очень незначительна. Хотя изменение скорости Земли незаметно ввиду огромной массы планеты, однако изменение ее импульса равно изменению импульса человека, но в противоположном направлении. Итак, оба изменения импульса взаимно сокращаются, и общий импульс остается постоянным.