— На полях «Арифметики» Диофанта записал свою теорему Ферма, — сказал Олег.
Дэ посмотрел на него недоверчиво:
— Вы знакомы с Ферма? С великим французским математиком?
— Мы встречались с ним на Дороге Светлого Разума, когда возвращались из Карликании. Да вот он, рядом с Диофантом!
— Ребята, ребята, смотрите, Лобачевский! — тормошил нас Сева.
— Как, вы и Николая Ивановича знаете? — ещё больше изумился Дэ.
— Конечно! — важно ответил Сева. — Он нам и письмо прислал: «Кажется, нельзя сомневаться… в истине того, что всё в мире может быть представлено числами».
— И буквами, — добавил Дэ. — Уверен, Лобачевский не сказал так лишь потому, что это само собой разумеется.
Платформа с учёными сделала три круга и покинула поле под гром приветствий.
И тогда началось самое интересное.
Но об этом тебе расскажет Сева. Так что жди письма.
Таня.
Не думай, что я такая умная и запомнила всё, что говорил А.
Речь его была тут же отпечатана и размножена. Мне оставалось только переписать. А листок я сохранила на память.
Разноцветные береты
(Нулик — отряду РВТ)
Дорогие ребята! Как же мне досадно, как обидно, что я не был на стадионе!
Но зато я сделал важное открытие. То есть открытие сделала мама. И вообще это не открытие, а давно известная вещь. Но для меня она была открытием.
Дело было так.
Мои ученики тоже решили устроить карнавал. И семь Нуликов явились в школу в новеньких беретах, все береты разных цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Словом, семь цветов радуги. Нулики в беретах должны были идти во главе карнавального шествия. Но мне не понравилось, в каком порядке они стоят. Мне показалось, что красный берет должен быть рядом с синим, а синий — с оранжевым. А другому Нулику захотелось, чтобы жёлтый был рядом с фиолетовым. Тут каждый стал вносить свои предложения:
— Жёлтый с красным!
— Красный с синим!
— Фиолетовый с жёлтым!
Все так расшумелись, что я долго не мог их успокоить. Порешили перепробовать все перестановки. А потом большинством голосов выбрать самую красивую.
И началось! Расставили Нуликов так, как они стояли вначале: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.
Потом Нулики стали меняться местами. Красный оказался на месте оранжевого, потом перешёл на место жёлтого, потом на место зелёного и так до тех пор, пока он не очутился на месте фиолетового. Теперь впереди оказался Нулик в оранжевом берете. Мы стали его тоже постепенно передвигать вправо. Так же поступили и с зелёным, и со всеми остальными. А когда красный берет опять оказался первым слева, мы решили его оставить на месте и стали двигать вправо другие береты: жёлтый, зелёный, синий… Переставляем, переставляем… Второй день переставляем. О карнавале никто уж не заикается. Сделали 527 перестановок, а до конца — далеко.
Мы было хотели бросить, но тут появилась моя мама. Пришлось рассказать, в чём дело. А она давай смеяться! А когда отсмеялась, спросила:
— Неужели вы не знаете, что такое факториал?
— Знаю! — выпалил я, вспомнив ваше письмо. — Это оркестр восклицательных знаков.
Мама стала смеяться снова. А потом сказала, что факториалы могут, конечно, играть в оркестре. Но это не мешает им оставаться математическим знаком. Его ставят после какого-нибудь числа. И тогда он показывает, сколько чисел натурального ряда надо перемножить. Вот например: если написать 3! — значит, надо перемножить все числа натурального ряда от единицы до трёх включительно:
3!=12·3=6.
А записывается это так, чтобы было покороче. Задумали перемножить числа от единицы до миллиона — пожалуйста: пишем 1 000 000!. Коротко и ясно.
А ещё мама сказала, что слово «факториал» произошло от латинского слова «фактор». По-нашему — это «производящий действие». Вот факториал и производит перемножение чисел натурального ряда.
Ну, это я запомнил сразу. Одного только никак не мог понять: при чём здесь разноцветные береты?
— А вот при чём, — сказала мама. — Если вы хотите узнать, сколько раз надо переставить семь Нуликов в разноцветных беретах, чтобы сделать все возможные перестановки, надо вычислить факториал числа семь, то есть перемножить все числа натурального ряда от единицы до семи.