Выбрать главу

— Или просто единица, — добавила Таня.

— Уж конечно! — ввернул я.

— Подумаешь, открытие! Всякое число, делённое само на себя, равно единице.

Двадцать, делённое на двадцать, равно единице; тридцать, делённое на тридцать, равно единице; Цэ в третьей степени, делённое на Цэ в третьей степени, равно единице. Об этом и говорить не стоит.

— Ты думаешь? — возразил Олег. — А по-моему, стоит.

— Отчего же?

— Оттого, что теперь я знаю, почему любое число в нулевой степени равно единице.

— Да ну?! Как это ты догадался?

— Очень просто:

Следовательно: с0=1.

Ну и голова у этого Олега! Жаль только, что он до этого не додумался раньше. Не пришлось бы мне срамиться там, у силомера. Впрочем, жалеть об этом не время. Письмо у меня и так получилось очень длинное. Но ты уж потерпи. Осталось немного.

Пекари-жонглёры убежали. А вместо них на поле вышли… Нет, нипочём тебе не догадаться кто! На поле вышли Чёрные Маски. Мы-то думали, что Чёрная Маска одна, а появилась целая армия. Во всяком случае, никак не меньше ста. И тут меня что-то кольнуло. Это проснулся в кармане талисман, о котором мы, сказать по чести, совсем забыли. Уж не хочет ли он намекнуть, что и наша Чёрная Маска тоже здесь? Но как её найдёшь? Ведь все они похожи друг на друга как две капли воды… вернее, как две капли чернил. Добро бы ещё здесь был Пончик. Но он, как назло, куда-то запропал.

Только я это подумал, как по рядам вихрем пронеслось что-то белое, мохнатое. Зрители шарахнулись. Секунда — и Пончик врезался в самую гущу растерявшихся артистов. Тут один из них как побежит! А Пончик — за ним!

— Держите, держите! — заорал я и помчался следом. Таня и Олег — за мной.

Что было! Все перепугались, вскочили. У выходов началась давка. Не знаю, что бы мы делали без стручка. Он снова выскользнул из моего кармана и полетел впереди, указывая дорогу. Скоро мы очутились у совершенно свободного запасного выхода, а там и на улице.

Я хотел спрятать стручок, а он всё летел, летел, пока не привёл нас к какому-то красивому зданию.

У широких стеклянных дверей сидел Пончик. Он тяжело дышал и смотрел на нас виноватыми мокрыми глазами. А над дверьми поблёскивала большая треугольная вывеска: «Абракадабра». Чувствуешь?

Сева.

Уважаемый радиокомментатор! Большое Вам спасибо за репортаж. Если бы не подпись в конце, я бы ни за что не догадался, что он невзаправдашний.

А сейчас послушайте мой радиорепортаж.

Наша школа выросла. Теперь в ней учатся не только Нулики, но и другие карликанские малыши — цифры. Им очень понравилась алгебраическая гимнастика. Но так как букв у нас нет, решили проделать её с цифрами.

Пять Двоек взяли четыре знака сложения и поставили их между собой:

2+2+2+2+2.

Потом четыре Двойки убежали. Осталась одна, а около неё встал коэффициент Пять:

52.

Тогда взрослые карликане подняли нас на смех. У вас, говорят, получилось пятьдесят два, а вовсе не пять Двоек. Чтобы правильно сделать приведение подобных, надо между Пятёркой и Двойкой поставить знак умножения. Тут вам, говорят, не Аль-Джебра. Да и вы, говорят, не буквы, а цифры.

Выходит: если рядом стоят две цифры — это двузначное число; если же рядом стоят две буквы — это их произведение. Я решил всё проверить на практике.

Потом я спросил, как написать буквами двузначное число? Оказывается, очень просто:

10 а+b.

Здесь a показывает число десятков, b — число единиц.

Я сейчас же записал 52 алгебраическим способом:

105+2=52.

Тут нам пришлось прекратить занятия, потому что прибежала одна Единичка. Она горько плакала. Ей ужасно хотелось стать коэффициентом при какой-нибудь букве. А мама ей сказала, что коэффициент Единица никогда не пишется, а только подразумевается. А Единичка подразумеваться не хотела.

Ну, мы как могли её утешили и заодно сделали другое великое открытие: при любой букве всегда имеется коэффициент, только его не всегда видно. Коэффициент, равный Единице, превращается в невидимку. Как только Единичка об этом узнала, она сразу развеселилась. Ещё бы! Это ведь не всякий может — стать невидимкой. Ну вот и всё.

С горячим приветом

Нулик-Комментатор.

А почему это в вашем репортаже алгебраической суммой называется

а+b−с?

До сих пор мы знали, что сумма получается только при сложении, а здесь ведь не только складывают, но и вычитают?!