Выбрать главу

а2 = а1 + d,

а3 = а2 + d;

а4 = а3 + d.

И так до конца прогрессии. Понятно?

— Понятно, понятно! — закричали все.

— Продолжаю! Надеюсь, все заметили, что в этой прогрессии восемь членов. Или четыре пары. Сумму крайних членов записываю так:

a1+a8

Обозначаю сумму всех членов большой латинской буквой Эс — S. Ведь слово «сумма» начинается с этой буквы! Значит,

S=4(a1+a8).

Кто-то спросил:

— А если в прогрессии десять членов? Как тогда вычислить сумму?

— Точно так же, — ответил фокусник. — Только пар станет уже не четыре, а пять, и последний член прогрессии будет a10:

S=5(a1+ a10).

— Стало быть, это справедливо для любого числа членов? — не унимался дотошный зритель.

— Какое число членов вам угодно сложить?

— Пять! Двадцать! Сто семьдесят пять! Двести сорок! Миллион семьсот тысяч! — неслось со всех сторон.

Фокусник закрыл уши руками:

— Тише, тише! Сейчас все ваши просьбы будут исполнены.

Он подождал, когда все успокоятся, и снова заговорил:

— Обозначаю число членов буквой Эн — п. Тогда последний член прогрессии будет а энное — an а сумма крайних членов:

a1+an.

Нетрудно догадаться, что число пар будет в два раза меньше числа п, то есть n/2. Вот и выходит, что сумма членов запишется так:

S = (a1+an) n/2.

— Разрешите спросить, — сказал Олег, — если число членов прогрессии нечётное, как вы его разобьёте на пары?

— А уж над этим вы подумайте сами. Но поверьте честному слову фокусника — формула нисколько не изменится.

Он ещё раз сложил свою палку, и она тут же исчезла. Все захлопали, засмеялись. Фокусник тоже сложился пополам и исчез так же неожиданно, как его палка.

Вот какие фокусы показывают в Аль-Джебре.

Таня.

Последняя калитка

(Нулик — отряду РВТ)

Здравствуйте, ребята! Письмо Тани нам ужасно понравилось. И все мои ученики сразу захотели стать фокусниками. Но я сказал, что фокусником буду я, а они — моими ассистентами. Их дело — сидеть на палке.

Сначала на палке никто сидеть не хотел. А когда я их уговорил, оказалось, что сидеть не на чем. Потому что мы нигде не могли найти палку, которая складывается.

Я очень расстроился, а все, наоборот, обрадовались и побежали кататься на калитке. Это у нас игра такая. В Арабелле давно уже нет никаких заборов. Случайно остался один по дороге в Римскую провинцию. Там ещё такая скрипучая калитка. Сядешь на неё и ездишь. Вперёд — назад, вперёд — назад!

Ну, я тоже поплёлся. Все стали кататься, а я стоял в сторонке и смотрел. А потом догадался: вот она, палка, которая складывается! То есть не палка, а забор с калиткой. Ведь калитка, если её открыть, доходит до самого забора! А забор сделан из редких поперечных планок. В калитке четыре поперечные планки. Отсчитать ещё четыре на заборе. Выбрать восемь ассистентов — на каждой планке по одному — и открыть калитку до самого конца. Моё предложение понравилось. На палке не хотел сидеть никто, зато на заборе захотели все. Чтобы не было скандала, я отобрал восемь ассистентов по порядку: Единицу, Двойку, Тройку, Четвёрку, Пятёрку, Шестёрку, Семёрку и Восьмёрку.

Сказать по правде, я думал, что это никакая не прогрессия, а натуральный ряд чисел, но у меня другого выхода не было, иначе все бы передрались.

Числа стали на планки. Несколько других ассистентов ухватились за калитку. Я взмахнул рукой, калитка со страшным скрипом поехала к забору… И вот уже у нас получились четыре пары чисел:

4 и 5;

3 и 6;

2 и 7;

1 и 8.

Сложили каждую пару — получилось девять. Вот так штука! Выходит, я сделал открытие: натуральный ряд чисел тоже прогрессия. И разность её равна единице.

Я сложил все числа натурального ряда от единицы до двухсот. Прямо в уме! Вот где мне пригодилась формула фокусника.

Первый член прогрессии a1=1, а последний ап=200. Значит, сумма прогрессии равна:

S = (1 + 200) 200/2 = 201 100 = 20 100.

Двадцать тысяч сто! Вот здорово! От радости я изо всех сил ухватился за калитку и стал её раскачивать вместе с ассистентами. И тут ржавые петли не выдержали, калитка отвалилась, и все попадали на землю. Настроение сразу испортилось. Ещё бы! У кого синяк под глазом, у кого штаны порваны… И мы пошли домой.