— Почему вы знаете?! — кипятился Сева. — Искать — так всюду.
— Ну что ж, я не прочь, — согласился я. — Кстати, познакомимся с обитателями этого «местечка».
Мы пересекли Числовую площадь, прошли кусочек Автоматической улицы и свернули налево.
Перед нами была бесконечная аллея. У входа в неё сидел старый-престарый карликан и смотрел в телескоп.
— Не видно, опять не видно… — бормотал он себе под нос.
— Чего не видно? —заинтересовался Сева. — Дайте мне взглянуть. Может быть, я увижу.
— Ну как же вы можете увидеть то, чего не видно? Не видно конца! Ещё только вчера я заметил в самом конце аллеи огромнейшее число и подумал: «Ну вот, теперь всё. Дальше ничего не может быть». А сегодня взглянул: за тем числом ещё число, да больше вчерашнего!
— А что это за число? — спросила Таня.
— Так вам сразу и объясняй! Какие прыткие! Лучше пройдитесь по этой аллее и глядите во все глаза. Может быть, тогда и поймёте. Может быть!.. — И старый ворчун уткнулся в свой телескоп.
Мы пошли по левой стороне аллеи и вдруг услышали команду:
— По порядку номеров ра-а-а-асчитайсь!
— Это что же, утренняя перекличка? — спросил Сева.
Стоящие по левую сторону числа стали выкрикивать:
— Два, три, пять, семь, одиннадцать, тринадцать…
Голоса становились всё глуше, уходя вдаль.
— Это уже не порядок, а беспорядок номеров, — заметила Таня.
Однако числа называли себя точно в той последовательности, в какой они стояли:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 и так далее.
— Что за сумасшедшие числа? — недоумевал Сева.
— Сами вы сумасшедшие! — возмутился старый карликан. — Да ещё и невежды! Неужели вы не прочитали надписи при входе?
— Нет, — растерялся Сева.
— Ведь это же аллея Простых Чисел! Поняли?
— А что такое простые числа?
— Посмотрите направо, — сказал карликан, — может быть, это прояснит вам мозги.
По правую сторону аллеи стояли совсем другие числа:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27 и так далее.
— Это как раз те числа, — сказала Таня, — которых недостаёт на левой стороне аллеи.
— А им туда нельзя! — захихикал карликан. — Это же составные числа, а не простые.
— Зачем же их здесь держат?
— У меня, кажется, начинает болеть печень от ваших нелепых вопросов! Разве вы не видите, что над вами? Нельзя смотреть только под ноги, иногда не мешает и наверх поглядеть.
Мы подняли головы.
— Волейбольная сетка! — ахнул Сева.
В самом деле, над всей аллеей была натянута гигантская сетка.
— Опять вы сказали чепуху! — рассердился карликан. — При чём здесь волейбол? Это вам не игрушки! И там вовсе не сетка, молодой человек, а решето!
— Решето?! Что же через него просеивают?
— Числа! Числа просеивают!! — закричал карликан, потеряв всякое терпение. — Посмотрите, как их основательно перетряхивают! Всякие отходы, вроде составных чисел, проваливаются сквозь решето, и их отводят на правую сторону аллеи. А в решете остаются в самом чистом виде наши драгоценные, наши ненаглядные простые числа. Их бережно, по порядку расставляют по левую сторону аллеи. Посмотрите, не правда ли, они очаровательны? — растрогался он вдруг.
Ребята из вежливости покивали головами, хотя никто из них никакого очарования в простых числах не находил.
К счастью, в это время нас догнала верная Четвёрка с бантиком. Все шумно обрадовались.
— Какой злой старикан! — пожаловался Сева. — Только и делает, что ворчит…
— Что вы! — рассмеялась Четвёрка. — Самый добрый карликан во всём государстве! Просто он не любит это показывать. Но не стоит отвлекать старика от работы. Я сама вам всё расскажу.
Мы с удовольствием уселись на скамью. И Четвёрка с бантиком начала свой рассказ:
— Давным-давно люди заметили, что есть такие числа, которые никого, кроме самих себя, не признают. Ни на какое другое число, кроме себя, они не делятся. И делают исключение только для единицы. И то только потому, что это деление на них никак не отражается: после деления на единицу они остаются такими же, какими были прежде. Вот эти-то числа люди и назвали простыми, хотя не так просто найти их среди других. Более двух тысяч лет назад в Греции знаменитый математик Эратосфен придумал очень остроумный способ выискивать простые числа. Он предложил для этого применять особое решето, сквозь которое все ненужные числа будут просеиваться, а все нужные — простые — оставаться.