Выбрать главу

Час от часу не легче! Разгадал одну загадку — теперь разгадывай другую.

Вот какие дела, старик!

Сева.

Старый знакомый

(Таня — Нулику)

Дорогой Нулик!

Мы всё ещё в том же заколдованном месте.

Расшифровали записку и стали решать задачу стручка. Бились, бились — ничего не выходит! Хотели уж идти в Автоматическую справочную, но Пэ отсоветовал.

— Если вы в самом деле хотите помочь одному незнакомцу, — сказал он таинственно, — решите эту задачу сами. Но для этого необходимо составить уравнение…

Легко сказать, составить уравнение! Составить треугольник Паскаля — это ещё куда ни шло, но уравнение?..

— Понимаю, — посочувствовал Пэ, — вы ещё не были на нашем образцовом строительстве. Иначе вы уже знали бы, с чем это едят.

— Строительство и уравнение? — покачал головой Сева.

— Ничего удивительного! Неужели вы думаете, что можно построить что-нибудь без уравнений?

Мы хотели сейчас же, сию минуту отправиться на это необыкновенное строительство, но директор напомнил, что сегодня праздник. Придётся подождать до завтра.

— Кстати, — добавил он, — сейчас в нашем кафе начнётся выступление знаменитого фокусника. Хотите посмотреть?

Не стоило и спрашивать. Кто же откажется от такого удовольствия? И можешь себе представить, на эстраде появился тот самый фокусник, который выступал в карликанском цирке! Мы обрадовались ему как родному. Сейчас он станет делить нуль на тысячу частей, покажет Великана из Бесконечности… Но всё было иначе.

Фокусник поднял руку, и в ней неизвестно откуда появилась длинная палка. Потом он выпустил палку, но она не упала, а продолжала лежать в воздухе, как на столе. Фокусник предложил публике убедиться. что палка не фальшивая, а выточенная из цельного куска дерева.

Первым на эстраду выскочил Сева, за ним — ещё несколько посетителей. Все они подтвердили, что никакого обмана нет.

Тогда фокусник взмахнул рукой, и вот уже на палке, как воробьи на проводах, уселись его ассистенты — числа:

2 4 6 8 10 12 14 16

— Обратите внимание, — сказал фокусник, — числа расположены на палке в определённом порядке. Каждое, начиная слева, больше предыдущего на одно и то же число.

— На два! — крикнули из зала.

— Правильно, на два.

Фокусник снова взмахнул рукой, и на палке появились другие числа:

3 8 13 18 23 28 33 38 43 48

— Попрошу уважаемую публику ответить: какой порядок в этом ряду чисел?

— Каждое число больше предыдущего на пять, — сказала я.

— Благодарю вас, — поклонился фокусник. — Так вот, должен вам сделать потрясающее сообщение: ряд чисел, где каждое последующее число больше предыдущего на постоянную величину, называется ар-р-р-ифметической пр-р-р-рогрессией. Но это ещё не всё. Эта постоянная величина называется разностью прогрессии. И более того: сами числа называются членами прогрессии!

— Ага! Значит, в первом случае разность прогрессии была равна двум, а во втором — пяти, — сказал кто-то.

— Браво! — воскликнул фокусник.

Сева толкнул меня локтем:

— Всё это хорошо, но когда начнутся фокусы?

Фокусник, наверное, услышал его слова. Он лукаво посмотрел на Севу и снова взмахнул рукой. И вдруг палка, толстая палка, выточенная из цельного куска дерева, согнулась посредине и концы её сошлись. Теперь числа, сидевшие на равном расстоянии от концов, оказались точно друг против друга: три — против сорока восьми, восемь — против сорока трёх и так далее.

— Попрошу сложить любую пару чисел, — предложил фокусник.

Мы сложили: три и сорок восемь. Получилось пятьдесят один. Затем восемь и сорок три. Снова пятьдесят один. Тринадцать плюс тридцать восемь… Что такое? Опять пятьдесят один! И восемнадцать плюс тридцать три, и двадцать три плюс двадцать восемь — все они в сумме давали одно и то же число: пятьдесят один.

— Вот это уже фокус! — закричал Сева.

— Где фокус? — развёл руками фокусник. — Это вы называете фокусом? Ха-ха-ха! Обыкновеннейшее алгебраическое правило.

— Но в чём же тогда фокус? — хорохорился Сева.

Фокусник небрежно разогнул палку, словно она была из бумаги.

— Попробуйте положить палку в воздухе, согнуть её пополам, потом снова разогнуть, и вы не станете задавать мне такие вопросы!