Более скромны и земны возможные применения церия. Совместная работа Центрального научно-исследовательского автомобильного и автомоторного института, Государственного института редких металлов и Горьковского автозавода показала, что этот элемент заметно улучшает чугун, из которого автозаводы льют коленчатые валы.
На совещании по применению редких элементов, которое состоялось в 1962 году в Свердловске, рассказывалось о том, что большой интерес проявляется сейчас машиностроением к цирконовым концентратам. Они оказались великолепным противопригарочным средством. Применение их позволяет вдвое сократить число обслуживающего персонала формовочных отделений литейных цехов. Отливки получаются с чистой поверхностью, и обрубочные операции сводятся к минимуму. Уже многие заводы Украины и Российской Федерации используют цирконовые концентраты для этих целей.
А что, если «одаренный природой» элемент бор соединить с редкоземельными? Эта счастливая мысль помогла химикам-неорганикам найти очень ценные для радиоэлектроники материалы. Бориды редкоземельных металлов, особенно гексаборид лантана, обладают способностью при нагреве выбрасывать чрезвычайно большое количество электронов, иначе говоря — высокими термоэмиссионными свойствами. Боридные катоды отлично работают в условиях низких давлений, могут эксплуатироваться при больших напряженностях поля; их свойства не ухудшаются от ионной бомбардировки.
Если сравнительно недавно практика вяло реагировала на предложения неорганики добывать редкоземельные элементы, то теперь она обвиняет химиков, что те вяло совершенствуют способы производства этих труднодоступных элементов, что редкие земли еще непростительно дороги, что их мало. Впрочем, спрос появился еще далеко не на все лантаноиды. Но со временем, когда станет более ясно, в чем их польза, спрос появится. Иначе быть не может. Неприменяемые ныне элементы — это двери в будущее, пока плотно закрытые. И нет на свете интереснее и важнее того, что за ними. А значит, кто-то уже настойчиво ищет соответствующие ключи.
Выступая в Праге на Международном симпозиуме по планированию науки, академик П. Л. Капица говорил, в частности, о том, что «нет еще количественной теории, которая бы связывала свойства вещества — например, механические, способность противостоять окислению в условиях высоких температур и другие — с его химическим составом и физической структурой, хотя природа сил между атомами хорошо известна.
Поэтому основной путь исканий здесь — эмпиризм. Но нетрудно показать, что даже эмпиризм не может полностью решить эту задачу. Нам известны около 100 элементов, которые образуют сплавы. Положим, что описание нужных свойств одного металла или сплава — его прочность, жаропрочность, упругость, электропроводность и так далее — занимает одну страницу. Для описания свойств самих элементов потребуется 100 страниц, для описания бинарных сплавов потребуется уже 10 тысяч страниц. Сплавы тройных систем уже займут миллион страниц. Легко видеть, что исследовать и систематически описать тройные сплавы является предельной возможностью… Но известно, что на практике уже используются сплавы из четырех компонентов и даже больше и такими сплавами уже были решены важные задачи.
Будет ли это всегда так? Я не думаю. Такие многокомпонентные сплавы, может быть, были найдены случайно, но вероятнее — интуитивным „нюхом“ талантливого ученого, который, как искусный повар, умеет готовить вкуснее других. Если есть интуиция, значит есть и закономерность. Задача науки — выявить эти закономерности, но метод решения таких сложных проблем до сих пор не найден, и это, несомненно, одна из проблем будущего».
Стоит ли задача синтезировать новые полупроводниковые вещества с заранее намеченными свойствами, ищут ли новые покрытия, предохраняющие металл от коррозии, составляют ли новые сплавы, способные удовлетворить последние требования техники, — исследователь на каждом шагу сталкивается с тем, что «нет еще количественной теории, которая бы связывала свойства вещества… с его химическим составом и физической структурой».