Выбрать главу

Так, у щелочных металлов лития, натрия, калия, рубидия, цезия, франция — у всех на внешней орбите по одному электрону, а это значит, что, вступая в химическую реакцию, их атомы могут «оперировать» только одним электроном, а именно: отдавать его, стремясь приобрести такую же устойчивую электронную оболочку, как у инертных газов.

Во вторую группу попадают щелочноземельные металлы. У них по два электрона на внешней орбите, и, следовательно, отдавая их, они могут проявлять валентность 2+ (то есть два положительных заряда у них не скомпенсированы) и т. д. В общем оказывается, что номер группы периодической системы указывает высшую возможную валентность элементов, стоящих в этой группе. Так, элементы седьмой группы могут проявлять валентность, равную 7+.

Но почему мы все время говорим только об отдаче электронов? Ведь точно такую же устойчивую структуру, подобную структуре инертного газа, элементы приобретут, если присоединят к себе недостающие до 8-электронной структуры электроны. Правильно. Они так и делают, но только там, где это «выгодно». Конечно, магнию, например, легче отдать свои два электрона, чем присоединить шесть, а хлору, у которого на внешней орбите семь электронов, достаточно приобрести один электрон, и орбита «достроена».

По этой же причине стоящему в середине азоту практически «все равно», отдавать или принимать электроны. Ему одинаково выгодно и то и другое.

Так мы выяснили разницу между металлами и неметаллами с точки зрения строения атома.

Металлы могут только отдавать свои валентные электроны; неметаллы, как правило, принимают их. Из сказанного само собой напрашивается вывод, что количество металлов и неметаллов в периодической системе должно быть приблизительно одинаково. Но не тут-то было! Оказывается, неметаллов в периодической системе очень мало. Они занимают только несколько клеточек в правом верхнем углу системы, а все остальные заполнены типичными металлами!

Все обстояло благополучно, пока мы не выходили за рамки первых трех периодов таблицы Менделеева. Но вот началось заполнение четвертого периода. Калий — один электрон на внешней, четвертой орбите, кальций — два электрона, скандий — два электрона. Титан и ванадий — опять по два. В чем дело? Почему, как только на внешней орбите размещаются два электрона, последующее заполнение четвертой орбиты прекращается, а каждый новый электрон размещается на внутренней, третьей орбите? Почему вообще с таким опозданием начинает заполняться третья орбита максимально возможным для нее числом электронов?

По-видимому, мешало сильное взаимное отталкивание одноименно заряженных электронов. Это привело к тому, что они начали образовывать новую орбиту дальше от ядра, вместо того чтобы «достраивать» старую. Но вот на новой орбите разместилась чрезвычайно устойчивая конфигурация из двух электронов. Настолько устойчивая, что вновь появляющимся электронам стало энергетически выгоднее «достраивать» внутреннюю, третью орбиту, тем более что такой «застройке» стал помогать увеличившийся положительный заряд ядра атома.

Впрочем, электроны внешней орбиты не совсем игнорируют пришельцев. Титан, например, несмотря на то, что имеет на внешней орбите всего два электрона, в химических реакциях проявляет валентность 4+ (как этого и требует номер группы). Недостающие два электрона он просто берет «взаймы» с третьей орбиты. Ванадию, поскольку он расположен в пятой группе, приходится «занимать» уже три электрона и т. д. Подобная картина наблюдается во всех четных рядах. У всех элементов четных рядов на внешней орбите имеется по два электрона, а это, как мы видели, признак металличности.

Но что же происходит после того, как внутренняя орбита полностью заполнена? В четвертом периоде это наступает у меди и цинка. Ну, тут уж делать нечего, и нашим двум электронам приходится потесниться. У следующего за цинком металла галлия на внешней орбите три электрона, у германия — четыре. А расположенные за германием мышьяк, селен и бром уже оказываются типичными неметаллами, то есть появляется закономерность изменения свойств такая же, как и в предыдущих (малых) периодах. Так образовался первый большой период. В дальнейшем, при заполнении следующих больших периодов, картина будет повторяться. С той лишь разницей, что в шестом периоде, после того как у бария появятся два электрона на внешней орбите, дальнейшее заполнение пойдет следующим образом. У лантана один электрон разместится на предыдущей, пятой орбите, а у лантаноидов начнется заполнение глубоко лежащей четвертой орбиты.