— Упрек вчерашним дежурным — плохо ведро вымыли. Не разберешь, вода или нет… Идея! — хохотнул он. — Вот, Толя, чудесный прием популяризации! Ты можешь сравнить положение в ядерной физике после первых работ по получению трансуранов с подобной мутной водицей, где что-то непонятное плавает.
— Ты вульгаризатор! — рассердилась Майка. — Очень уж ты непоэтичный человек, Илья.
— Ну, будет, — махнул я рукой. — Пошли дальше.
Итак, при бомбардировке урана медленными нейтронами никакие трансурановые элементы не образуются, а все «загадочные» продукты — осколки деления, элементы середины периодической системы.
Но можно ли считать окончательным этот вывод.
Первое веское «нет» сказали советские ученые. Академик В. Г. Хлопин и его сотрудники привели несколько весьма убедительных доказательств в пользу того, что наряду с осколками деления должны получаться (правда, в весьма небольших количествах) трансурановые элементы.
Значит, все заключается в совершенствовании методов выделения продуктов бомбардировки. Химия ядерная ставила перед химией классической, химией электронных оболочек, интересную и трудную задачу: выделить следы новых элементов и изучить их химические и физические свойства.
И вот, наконец, наступил момент, когда можно было с уверенностью заявить об открытии первого трансуранового элемента. Эта честь принадлежит американским ученым Макмиллану и Эйбельсону.
Ход их рассуждений таков: когда нейтроны попадают в ядра урана, образуются осколки, которые благодаря значительной кинетической энергии разлетаются из исходных ядер на относительно большие расстояния. Но часть ядер урана, поглотивших нейтроны, не делится и в отличие от осколков как бы остается на месте. Если отделить осколочные ядра от неразделившихся, среди последних можно с большой вероятностью обнаружить изотопы трансурановых элементов.
Действительно, в 1940 году Макмиллану и Эйбельсону удалось подтвердить образование изотопа элемента 93 среди неразделившихся ядер урана.
Вот она, эта ядерная реакция. Она послужила началом блестящих исследований, приведших в итоге к получению десятков радиоактивных изотопов трансурановых элементов:
92U238 + 0n1→92U239.
Получается радиоизотоп урана с периодом полураспада 23 минуты. Он и превращается в ядро элемента с зарядом 93: 92U239 – β→93U239.
Элемент 93 получил название «нептуний» (символ Np) в честь планеты Нептун, расположенной в солнечной системе за Ураном. В том же году был синтезирован следующий трансурановый элемент, плутоний (Pu).
Роль бомбардирующих частиц в данном случае играли дейтроны, мишенью служил уран 238. Авторами открытия явилась группа американских ученых, возглавляемая будущим нобелевским лауреатом Гленном Сиборгом.
Год спустя был получен другой изотоп плутония — Pu239, который вскоре приковал к себе внимание не одних только физиков-теоретиков. Оказалось, что плутоний 239 способен делиться, подобно урану, под действием медленных нейтронов, с выделением огромного количества энергии. В руках человечества оказалась перспектива использования нового ядерного горючего наряду с ураном. Так как в те суровые военные годы в США интенсивно разрабатывалась проблема атомной бомбы, то на решение задачи получения плутония в значительных количествах были брошены большие силы и средства. В Чикаго уже в 1942 году вступил в действие ядерный реактор. В нем уран 238 облучали нейтронами. В результате последующей цепочки радиоактивных превращений образовался Pu239.
К этому времени свойства плутония и нептуния были изучены уже очень хорошо. Эта задача была бы непосильной для старой химии, привыкшей оперировать с относительно большими количествами вещества.
Но нужно пояснить, что следует понимать под «большими количествами».
Перенесемся к началу XX века, ко времени открытия первых радиоактивных элементов. Как много сил и труда вложили супруги Кюри, чтобы из тонн руды получить препарат радия весом в 0,1 грамма и, работая с этим мизерным количеством, изучить его свойства! Для тех времен это было действительно случаем беспрецедентным, настоящим подвигом ума, таланта и воли. Но дайте такое количество какого-нибудь трансуранового элемента современному химику и попросите его изучить свойства элемента. Не сомневайтесь, химик придет в восторг. Еще бы! Держать в руках целую десятую часть грамма вещества, да ведь это же громадное количество! С ним можно быстро и просто определить любые свойства. Видите, как меняются времена! Пионерам изучения нептуния и плутония пришлось работать с такими количествами препаратов, перед которыми оказались бы бессильными фантастическое трудолюбие и неистощимая энергия супругов Кюри!