Выбрать главу

Будем идти от противного, как и в главе 1, где мы подсчитывали количество простых чисел. Предположим, что √2 – рациональное число. Если это допущение приведет к абсурдным выводам, значит, оно несостоятельно.

Итак, приступим. Если √2 – рациональное число, его можно выразить в виде отношения двух целых чисел:

Возведем обе части тождества в квадрат:

Раскроем скобки:

Таким образом:

или:

2b² = a². (С)

Если a – целое число, мы можем разложить его на простые множители, причем (согласно основной теореме арифметики) одним-единственным способом:

a = p1 × p2 × … × pn.

Проделаем аналогичную процедуру с b:

b = q1 × q2 × … × qm.

Следовательно, левую часть равенства (С) можно представить в таком виде:

2b² = 2 × (q1 × q2 × … × qm)² = 2 × (q1 × q1) × (q2 × q2) × … × (qm × qm).

Несложно заметить, что 2b² раскладывается на нечетное число простых множителей.

Аналогично поступаем с правой частью (С):

a² = (p1 × p2 × … × pn) ² = (p1 × p1) × (p2 × p2) × … × (pn × pn).

В отличие от 2b², выражение a² раскладывается на четное число простых множителей.

Подытожим. В соответствии с нашим предположением 2b² = a². Это означает, что некоторое число одновременно можно разложить на четное и нечетное количество простых множителей. Но это противоречит основной теореме арифметики.

Мы пришли к невозможному выводу. Таким образом, наша изначальная посылка была ошибочна. Следовательно, √2 не является рациональным числом.

Такие числа, как √2 называют иррациональными. Рациональные числа хороши для операций с физическими величинами[43], но их недостаточно для всех математических величин. Длина диагонали квадрата 1 × 1 – иррациональное число.

Конструктивные числа

Начав с числа 1 и шаг за шагом проделывая операции сложения, вычитания и умножения, мы можем получить любое целое число, но и только. Если мы добавим операцию деления, нам откроются все рациональные числа, но ими же мы и будем ограничены.

Если мы введем операцию извлечения квадратного корня[44], то получим числа, которые не являются отношением целых чисел. Например:

Для удобства мы будем называть конструктивными такие числа, которые можно получить с помощью числа 1 и пяти операций – сложения, вычитания, умножения, деления и извлечения квадратного корня – с привычными оговорками: нельзя делить на ноль и извлекать корень из отрицательных величин.

Разумеется, возникает вопрос: все ли числа конструктивные?

Древние греки усматривали магическую внутреннюю связь между арифметикой и геометрией. Эта связь подтверждалась операциями с использованием двух инструментов: линейки без делений и циркуля. Возьмем отрезок единичной длины; какова может быть длина отрезков, построенных на его основе с помощью карандаша, линейки без делений и циркуля?

Складывать и вычитать отрезки просто. Пусть у нас есть отрезки длиной a и b. С помощью линейки мы продлеваем первый отрезок. Ставим иглу циркуля в начало второго отрезка, а острие карандаша на другой ножке циркуля – в конец отрезка. После этого мы перемещаем иглу в конец первого отрезка и отмечаем точку на продленной линии. Так мы находим сумму двух отрезков. Что касается вычитания, оно будет означать не приращение, а укорочение отрезков.

Дальше дело пойдет несколько сложнее, но мы вполне способны умножать, делить и даже извлекать квадратные корни из длин отрезков с помощью линейки без делений и циркуля.

Да, это так: с помощью двух простейших инструментов мы можем найти длины, равные всем положительным конструктивным числам!

Было время, когда греки думали, что все числа рациональные, но пифагорейцы доказали, что это не так.

Однако грекам было непросто расстаться с верой в связь арифметики и геометрии. В основе этой веры лежали представления об эстетике. Неужели не все числа можно выразить с помощью линейки без делений и циркуля?

вернуться

43

Не со всеми: есть физические величины, про которые нет оснований полагать, что отношения между ними выражаются в рациональных числах. Впрочем, как следует из сказанного выше, можно добиться сколь угодно точного приближения рациональными числами. – Прим. науч. ред.

вернуться

44

Здесь мы рассматриваем исключительно квадратные корни из неотрицательных чисел. В главе 5 мы увидим, что в математике есть область, где можно извлекать квадратный корень из отрицательного числа.