Выбрать главу

Особое внимание читателя хочется обратить на катушку L2 (рис. 11.38).

Рис. 11.38. Конструкция катушки L2

Она выполняется без сердечника, способом намотки на оправке диаметром 6 мм. Количество витков провода ПЭВ-2 или ПЭТВ диаметром 0,5 мм — 3,5. После намотки катушку следует растянуть так, чтобы ее длина между крайними выводами составила порядка 25 мм. Середину катушки необходимо зачистить от, лака и припаять к этой точке конденсатор С6. Длину свободных крайних выводов рекомендуется оставить 18 мм. В качестве катушек L1 и L3 можно использовать дроссели серии ДМ или ДПМ, а также импортные аналоги (индуктивностью 10…20 мкГн),

Монтаж приемника лучше всего осуществлять на двухсторонней печатной плате, у которой одна сторона сохранена полностью, а другая — содержит «пятачки» для пайки элементов. Естественно, должны быть просверлены отверстия для «общего проводника», которым выступает полностью сохраненная сторона.

Печатная плата приемника показана на рис. 11.39, сборочный чертеж — на рис. 11.40.

Рис. 11.39. Печатная плата

Рис. 11.40. Сборочный чертеж и внешний вид монтажа

Настраивать приемник нужно, предварительно подобрав величину конденсатора С5 до установки границ диапазона УКВ при перестройке конденсатором С4. Звук в этот момент может быть каким угодно. Затем, отрегулировав максимально возможное качество звука резистором R7, резисторами R2 и R5, добиться улучшения качества звука. Приемник настроен. Его можно поместить в подходящий корпус, вывести на переднюю панель оси С4, R7, R8. Катушку L2 желательно максимально удалить от металлических предметов, так как любой металлический предмет влияет на резонансную частоту контура.

Приемник прямого преобразования

Этот вид радиоприемников очень популярен у радиолюбителей, ведь при весьма простой реализации он позволяет добиться высоких показателей селективности и чувствительности. Кроме того, приемник прямого преобразования не нуждается в постоянной подстройке уровня регенерации, так как построен он не по принципу прямого усиления сигнала, а с использованием методов частотного преобразования сигналов. Чтобы понять, как работает приемник прямого преобразования, или гетеродинный приемник, как его по-другому называют, обратим внимание на рис. 11.41.

Рис. 11.41. К пояснению работы гетеродинного радиоприемника

Мы опять видим знакомый детекторный приемник, правда, несколько модернизированный. В контур введен генератор гармонического (синусоидального) колебания G, называемый гетеродином. Имеется также нелинейный элемент — полупроводниковый диод VD. Наличие нелинейности — принципиально важный момент для гетеродинного приемника, так как только нелинейный элемент может осуществлять преобразование сигналов. Чтобы показать, как это преобразование осуществляется, заглянем в школьный курс тригонометрии.

Для простоты будем считать, что приемник получает из антенны гармонический сигнал, который математически можно записать так:

где Uam — амплитуда сигнала, получаемого из антенны;

fa — частота принимаемого сигнала.

Генератор G создает другой синусоидальный сигнал, который записывается так:

где UGm — амплитуда сигнала, получаемого от генератора;

fG — частота сигнала генератора.

Оба сигнала, складываясь, воздействуют на нелинейный элемент — полупроводниковый диод — и в результате на конденсаторе С2 выделяется сигнал, который можно записать в виде:

где k — коэффициент пропорциональности, характеризующий качество преобразования.

Замечаем, что выходной сигнал будет содержать как очень высокую частоту — суммарную, складывающуюся из частоты гетеродина и несущей сигнала, так и низкую, состоящую из разности этих частот.

Здесь, чтобы понять процессы., происходящие в гетеродинном приемнике, сделаем небольшое отступление и разберемся в спектрах модулированных колебаний.

Помните, мы не раз уже говорили о том, что любой сигнал можно схематически изобразить как во временной, так и в частотной системах координат. Сейчас вы без труда изобразите синусоидальный сигнал во временной области — это «змейка», колеблющаяся относительно горизонтальной оси.

А вот как выглядит этот же синусоидальный сигнал в частотной области? Удивительно, но — очень просто! Взгляните на рис. 11.42.

Рис. 11.42. Вид синусоидального сигнала в частотной области (спектр)

Сигнал показан вертикальной палочкой, размер которой равен амплитуде сигнала и расположенной на частоте fc — частоте сигнала.

Все довольно просто, когда в электрической цепи мы наблюдаем одиночный синусоидальный сигнал. А если в этой цепи имеется несколько разночастотных синусоидальных сигналов? Рассмотреть их во временной области «в лоб» мы не сможем — увидеть удастся только малопонятное их переплетение. Выручит информация, представленная в частотной области, — спектр сигналов. На рис. 11.43 показан спектр трех синусоидальных сигналов с разными частотами и амплитудами.

Рис. 11.43. Спектр трех синусоидальных сигналов

Примерно так же выглядит распределение сигналов радиостанций в эфире. Чтобы выделить нужный Сигнал на фоне мешающих, нужно «вырезать» его из всего спектра фильтром, роль которого в простейшем случае выполняет одиночный колебательный контур или регенеративный каскад. На рис. 11.44 видно, что с помощью операции селекции частота f2 будет принята, а соседние частоты — нет.

Рис. 11.44. Выделение нужного сигнала из спектра

Чтобы принять частоту f1 или f3 нужно перестроить фильтр на желаемую частоту. Из сказанного внимательный читатель может сделать справедливый вывод, что слишком широкая резонансная кривая может захватить и соседние — мешающие — частоты. Значит, нужно делать селективную кривую как можно острее, тогда и качество приемника будет лучше. Все правильно, но до определенного момента. Если читатель не только листал страницы этой главы, лежа на уютном диване, но еще и работал руками, изготавливая и налаживая радиоприемники, он наверняка заметил, что регенеративный приемник не может обеспечить хорошее качество звука при слишком большой степени регенерации, — звук становится неестественным, «бубнящим». Почему?