Выбрать главу

Переведем этот мысленный эксперимент на язык науки: когда животное попадает в незнакомое пространство и начинает исследовать его, в гиппокампе активизируется уникальная комбинация нейронов места, а когда оно попадает в это же пространство снова, возбуждается та же самая комбинация, причем каждый нейрон активизируется в том же месте пространства, что и раньше; этот паттерн и есть когнитивная карта, сообщающая животному, что оно уже здесь было. О’Киф выяснил, что для того, чтобы освоиться в коробке площадью один квадратный метр, крысе требуется около 32 нейронов места, которые возбуждаются, когда крыса находится в разных частях коробки. Чем чаще животное возвращается в ту или иную область, повторно активизируя ту же самую последовательность нейронов места, тем устойчивее становятся связи между нейронами, а значит, и память. Разные пространства отображаются разными комбинациями нейронов места, то есть разными картами. Нейробиологи, изучающие поведение крыс в лабиринтах, иногда могут с точностью до сантиметра определить местоположение крысы по сигналам от нейронов места – это впечатляющий пример чтения мыслей животных.

Как бы то ни было, когнитивная карта отличается от тех карт, которые вы можете увидеть в Королевском географическом обществе в Лондоне или в Библиотеке Конгресса в Вашингтоне. Гиппокамп не хранит копии последовательной активации нейронов места; эти нейроны возбуждаются только тогда, когда животное находится в соответствующей области[67]. Мозг должен где-то хранить пространственную память, но никто не знает, где он ее хранит и в какой форме.

Нейроны места в гиппокампе – в отличие от своих полей места – явно не похожи на карту: соседние нейроны места не обязательно соответствуют соседним точкам пространства, и распределение полей по нейронам выглядит случайным. Более того, вся эта схема перемешивается – или «составляется новая карта», как выражаются нейробиологи, – когда животное попадает в новую обстановку. До сих пор никто не сумел предсказать, как будут вести себя нейроны места при смене обстановки или где могут находиться соответствующие поля места.

«Отсутствие у нейронов места топографической структуры всегда приводило меня в замешательство, – говорит О’Киф. – Я всю жизнь работал на кафедре анатомии. Если вы посмотрите на кору головного мозга, то клетки, соответствующие пальцу, располагаются рядом с клетками, соответствующими соседнему пальцу, то есть мы видим своего рода топографическое отображение. Но когда перед вами структура, в которой этого не наблюдается, и два нейрона места, отображающие соседние точки пространства, расположены далеко друг от друга, и все это должно быть картой… Это не карта».

В 1998 году покойный Роберт Мюллер, коллега О’Кифа, продемонстрировал случайный характер расположения нейронов места, регистрируя электрическую активность этих нервных клеток у крыс, исследовавших незнакомое пространство. Затем он перезагрузил эти клетки, стерев пространственную память крыс, и снова поместил животных в то же место, чтобы проверить, будут ли возбуждаться те же нейроны места. Оказалось, что нет. Когнитивная карта крысы – схема возбуждения ее нейронов места – была совсем не похожа на первоначальную[68]. Это указывает не только на непредсказуемость отображения в мозге местоположения в пространстве, но и вообще на отсутствие какой-либо предопределенности[69]. Возможно, на то есть серьезная биологическая причина, но в таком случае понять идею гиппокампа как карты еще сложней.

За время, прошедшее с тех пор, как О’Киф открыл нейроны места, стало ясно, что когнитивные карты не просто отображают информацию о пространстве. Если крыса бежит по определенному маршруту, потом поворачивает и бежит назад, когнитивные карты путешествий туда и обратно будут отличаться. В данном случае карта регистрирует не только топографию маршрута, но и направление движения. Как мы увидим, когнитивные карты отображают множество аспектов опыта животного (если по дороге встречается еда или крысе уже знаком этот маршрут, карта тоже будет выглядеть иначе). Нам не выжить без когнитивных карт, но никто точно не знает, что они собой представляют.

Давайте на минуту прервемся и поразмыслим о физическом пространстве. Что это? Реально ли оно? Существует ли оно за пределами нашего восприятия и, если да, откуда нам это знать, если информацию мы получаем только через наши органы чувств? Философы и физики не одно столетие бились над ответами на эти вопросы, но так и не пришли к единому мнению. Поэтому неудивительно, что мы не понимаем, как работает когнитивная карта, то есть как абстрактные отображения в гиппокампе переводятся в геометрическое восприятие пространства. Разрешив эту загадку, мы не только узнаем, как мозг запоминает дорогу из пункта А в пункт Б, но также поймем природу физического мира.

вернуться

67

Или, как мы вскоре увидим, когда оно думает об этой области или видит ее во сне.

вернуться

68

Clifford Kentros et al. (1998). Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade // Science. 280. Р. 2121–2126.

вернуться

69

Есть и противоположные взгляды: James C. R. Whittington et al. (2019). The Tolman-Eichenbaum machine; unifying space and relational memory through generalisation in the hippocampal formation // BioRxiv preprint: https://www.biorxiv.org/content/10.1101/770495v1